• Title/Summary/Keyword: A.C. impedance

Search Result 711, Processing Time 0.028 seconds

The Structural and Electrochemical Properties of Thermally Aged Li[Co0.1Ni0.15Li0.2Mn0.55]O2 Cathodes

  • Park, Yong-Joon;Lee, Ju-Wook;Lee, Young-Gi;Kim, Kwang-Man;Kang, Man-Gu;Lee, Young-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2226-2230
    • /
    • 2007
  • As a cathode material of lithium rechargeable batteries, charged Li[Co0.1Ni0.15Li0.2Mn0.55]O2 electrodes, which were aged thermally at 25 oC and 90 oC respectively, were characterized by means of charge/discharger, impedance spectroscopy, and X-ray diffraction. The discharge capacity diminution of the electrodes aged at 25 oC and 90 oC for 1 week was 4% and 23%, respectively. The cell aged at 25 oC was recovered on cycling. However, the capacity loss after ageing at 90 oC was not recovered in a subsequent cycling test, which demonstrates that the reaction occurring during ageing at 90 oC is irreversible. A significant impedance increase of aged electrode at 90 oC is associated with irreversible capacity loss. The structural changes including phase transformation were not detected by XRD analysis, because it could be due to out of detection limit. After ageing, impedance was slightly decreased during subsequent cycling test. It could be explained the cyclic performance of aged sample is stable. The thermal stability was not deteriorated by ageing even at the high temperature of 90 oC.

Effects of Alloying Elements(Cr, Mo, N) on Repassivation Characteristics of Stainless Steels Studied by the Abrading Electrode Technique and A.C Impedance Spectroscopy (마멸 전극 기법과 교류 임피던스법으로 연구한 스테인리스강의 합금원소(Cr, Mo, N)가 재부동태 특성에 미치는 영향)

  • Ham Dong-Ho;Kim Suk-Won;Lee Jae-Bong
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.4
    • /
    • pp.211-218
    • /
    • 2000
  • The effects of alloying elements, Cr, Mo, and N on repassivation characteristics of stainless steels were investigated by using the abrading electrode technique and a.c impedance spectroscopy. The role of alloying elements on the stability of passive film and their repassivation characteristics were examined using alloy steels such as Fe-Cr, Fe-Cr-Mo, 304, 304LN, 316, and 316LN. The electrochemical characteristics of the passive film were investigated by in-situ d.c. and a.c. electrochemical methods. Localized corrosion resistance is believed to have much to do with the stability and repassivation characteristics of the passive film. The effects of alloying elements on the current transients and repassivation kinetics were systematically examined by using the abrading electrode technique and a.c. impedance spectroscopy. The experimental results were analyzed in order to elucidate the relationship between passive film stability, repassivation characteristics, and alloying elements.

PZT Impedance-based Damage Detection for Civil Infrastructures (토목 구조물의 PZT Impedance 기반 손상추정기법)

  • S. H. Park;Y. Roh;C. B. Yun;J. H. Yi
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.373-380
    • /
    • 2004
  • This paper presents the feasibility of an impedance-based damage detection technique using piezoelectric (PZT) transducers for civil infrastructures such as steel bridges. The impedance-based damage detection method is based on monitoring the changes in the electrical impedance. Those changes in the electrical impedance are due to the electro-mechanical coupling property of the piezoelectric material and structure. An effective integrated structural health monitoring system must include a statistical process of damage detection that is automated and real time assessment of damage in the structure. Once measured, damage sensitive features from this impedance change can be statistically quantified for various damage cases. The results of the experimental study on three kinds of structural members show that cracks or loosened bolts/nuts near the PZT sensors may be effectively detected by monitoring the shifts of the resonant frequencies. The root mean square (RMS) deviations of impedance functions between before and after damages were also considered as a damage indicator. The subsequent statistical methods using the impedance signature of the PZT sensors were investigated.

  • PDF

A Study of Design and Analysis on the High-Speed Serial Interface Connector (고속 직렬 인터페이스 커넥터의 설계 및 분석에 대한 연구)

  • Lee, Hosang;Shin, Jaeyoung;Choi, Daeil;Nah, Wansoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.12
    • /
    • pp.1084-1096
    • /
    • 2016
  • This paper presents method of design and analysis of a high-speed serial interface connector with a data rate of 12.5 Gbps. A high-speed serial interface connector is composed of various material and complex structures. It is very difficult to match the impedance of each discontinuous portion of connector. Therefore, this paper proposes the structure of a connector line that be simplified a connector. In the structure of proposed connector line, this research presents a method for extracting R, L, C and G parameters, analyzing the differential mode impedance, and minimizing the impedance discontinuity using time domain transmissometry and time domain reflectometry. This paper applies the proposed methods in the connector line to the high-speed serial interface connector. The proposed high-speed serial interface connector, which consists of forty-four pins, is analyzed signal transmission characteristics by changing the width and spacing of the four pins. According to the analysis result, as the width of the ground pin increases, the impedance decreases slightly. And as the distance between the ground pin and the signal pin increases, the impedance increases. In addition, as the width of the signal pin increases, the impedance decreases. And as the distance between the signal pin and the signal pin increases, the impedance decreases. The impedance characteristic of initial connector presents ranges from 96 to $139{\Omega}$. Impedance characteristic after applying the structure of proposed connector is shown as a value between 92.6 to $107.5{\Omega}$. This value satisfies the design objective $100{\Omega}{\pm}10%$.

Electric Properties of LB Films using Impedance Analysis of Quartz Crystal (수정진동자의 임피던스 해석에 의한 LB막의 전기적 특성)

  • Jin, Cheol-Nam;Kim, Gyeong-Hwan;Yu, Seung-Yeop;Gwon, Yeong-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.7
    • /
    • pp.503-507
    • /
    • 1999
  • Quartz crystal in contact with viscoelastic medium was described directly in terms of the electrical equivalent circuit of the system. Stearic acid was used as viscoelastic medium and deposited on the surface of quartz crystal using the Langmuir-Blodgett(LB) method. Impedance properties of quartz crystal coated with LB films which were investigated by using admittance diagram and $Ζ-\theta$ plot a method of impedance analysis. When stearic acid LB film was deposited on the surface of quartz crystal, resonant frequency of quartz crystal was changed about 100 Hz/layer. This result illustrates the ability of the sensor system to detect small amounts of special gas in air.

  • PDF

Effects of Length of Down Conductor on Transient Ground Impedance (인하도선 길이에 따른 과도접지임피던스 특성)

  • Lee, B.H.;Jeong, D.C.;Lee, S.B.;Lee, T.H.;Jung, H.U.;Lee, K.S.;Lee, S.C.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2235-2237
    • /
    • 2005
  • This paper presents the transient impedance behaviors of grounding systems to lightning impulse current. The potential rise and effective impulse ground impedance of the test grounding electrodes were measured as a function of the rise time of impulse currents and lengths of down conductor. The transient ground impedances strongly depend on the configuration and size of grounding electrodes, the impulse current shapes and lengths of down conductor, and the inductance of reduce of grounding electrode inductance is an important factor to improve the transient ground impedance.

  • PDF

A Study on the Detection of LIF and HIF Using Neural Network (신경회로망을 이용한 LIF 및 HIF검출에 판한 연구)

  • Choi, H.S.;Park, S.W.;Chae, J.B.;Kim, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.924-926
    • /
    • 1997
  • A high impedance fault(HIF) in a power system could be due to a downed conductor, and is a dangerous situation because the current may be too small to be detected by conventional means. In this paper, HIF(High impedance fault) and LIF(Low impedance fault) detection methods were reviewed. No single defection method can detect all electrical conditions resulting from downed conductor faults, because high impedance fault have arc phenomena, asymmetry and randomness. Neural network are well-suited for solving difficult signal processing and pattern recognition problem. This paper presents the application of artificial neural network(ANN) to detect the HIF and LIF. Test results show that the neural network was able to identify the high impedance fault by real-time operation. Furthermore, neural network was able to discriminate the HIF from the LIF.

  • PDF

AC Impedance Study of Oxygen Electrode in Phosphoric Acid Fuel Cell (교류 임피던스법에 의한 인산형 연료전지의 산소전극 특성 연구)

  • Song Rak-Hyun;Kim Chang-Soo;Shin Dong-Ryul
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.4
    • /
    • pp.191-195
    • /
    • 2000
  • Electrochemical properties of the oxygen electrode in phosphoric acid fuel cell have been studied using AC impedance method as a function of applied potential, operating temperature and teflon content in the electrode. The oxygen electrode reaction in the $105wt.\%$ phosphoric acid is characterized by a parallel resistive component, $R_p$ and a capacitive component, $C_p$ with serial electrolyte resistance, $R_s$. The conductivity of the phosphoric acid is found to be 0.31-0.47 S/cm in the range of $130\;to\;190^{\circ}C$ from the measured impedance. The increase of applied potential and temperature produced the decreased RP and the increased $C_p$, which means the increase of the oxygen electrode reaction rate. The single cells with the cathode of various teflon contents were tested, and the cathode with $40wt.\%$ teflon showed good performance, which is considered to be related to an optimized impedance behavior.

Bioelectrical Impedance Analysis at Popliteal Regions of Human Body using BIMS

  • Kim, J.H.;Kim, S.S.;Kim, S.H.;Baik, S.W.;Jeon, G.R.
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Bioelectrical impedance (BI) at popliteal regions was measured using a bioelectrical impedance measurement system (BIMS), which employs the multi-frequency and the two-electrode method. Experiments were performed as follows. First, a constant AC current of $800{\mu}A$ was applied to the popliteal regions (left and right) and the BI was measured at eight different frequencies from 10 to 500 kHz. When the applied frequency greater than 50 kHz was applied to human's popliteal regions, the BI was decreased significantly. Logarithmic plot of impedance vs. frequency indicated two different mechanisms in the impedance phenomena before and after 50 kHz. Second, the relationship between resistance and reactance was obtained with respect to the applied frequency using BI (resistance and reactance) acquired from the popliteal regions. The phase angle (PA) was found to be strongly dependent on frequency. At 50 kHz, the PA at the right popliteal region was $7.8^{\circ}$ slightly larger than $7.6^{\circ}$ at the left popliteal region. Third, BI values of extracellular fluid (ECF) and intracellular fluid (ICF) were calculated using BIMS. At 10 kHz, the BI values of ECF at the left and right popliteal regions were $1664.14{\Omega}$ and $1614.08{\Omega}$, respectively. The BI values of ECF and ICF decreased sharply in the frequency range of 10 to 50 kHz, and gradually decreased up to 500 kHz. Logarithmic plot of BI vs. frequency shows that the BI of ICF decreased noticeably at high frequency above 300 kHz because of a large decrease in the capacitance of the cell membrane.

Bioelectrical Impedance Analysis on the Paretic and Non-paretic Regions of Severe and Mild Hemiplegic Stroke Patients

  • Yoo, Chanuk;Yang, Yeongae;Baik, Sungwan;Kim, Jaehyung;Jeon, Gyerok
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.115-125
    • /
    • 2017
  • For many stroke patients undergoing rehabilitation therapy, there is a need for indicator for evaluating the body function in paretic and non-paretic regions of stroke patients quantitatively. In this paper, the function of muscles and cells in paretic and non-paretic regions of severe and mild hemiplegic stroke patients was evaluated using multi-channel bioelectrical impedance spectroscopy. The paretic and non-paretic regions of severe and mild stroke patients were quantitatively assessed by using bioelectrical impedance parameters such as prediction marker (PM), phase angle (${\theta}$), characteristic frequency ($f_c$), and bioelectrical impedance vector analysis (BIVA). The mean values of impedance vector were significantly discriminated in all comparisons (severe-paretic, severe-non-paretic, mild-paretic, and mild-non-paretic). The bioelectrical impedance parameters were proved to be a very valuable tool for quantitatively evaluating the paretic and non-paretic regions of hemiplegic stroke patients.