• Title/Summary/Keyword: A. tumefaciens C58

Search Result 25, Processing Time 0.023 seconds

Oxalate Decarboxylase from Agrobacterium tumefaciens C58 is Translocated by a Twin Arginine Translocation System

  • Shen, Yu-Hu;Liu, Rui-Juan;Wang, Hai-Qing
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.7
    • /
    • pp.1245-1251
    • /
    • 2008
  • Oxalate decarboxylases (OXDCs) (E.C. 4.1.1.2) are enzymes catalyzing the conversion of oxalate to formate and $CO_2$. The OXDCs found in fungi and bacteria belong to a functionally diverse protein superfamily known as the cupins. Fungi-originated OXDCs are secretory enzymes. However, most bacterial OXDCs are localized in the cytosol, and may be involved in energy metabolism. In Agrobacterium tumefaciens C58, a locus for a putative oxalate decarboxylase is present. In the study reported here, an enzyme was overexpressed in Escherichia coli and showed oxalate decarboxylase activity. Computational analysis revealed the A. tumefaciens C58 OXDC contains a signal peptide mediating translocation of the enzyme into the periplasm that was supported by expression of signal-peptideless and full-length versions of the enzyme in A. tumefaciens C58. Further site-directed mutagenesis experiment demonstrated that the A. tumefaciens C58 OXDC is most likely translocated by a twin-arginine translocation (TAT) system.

repABC- Type Replicator Region of Megaplasmid pAtC58 in Agrobacterium tumefaciens C58

  • LEE KO-EUN;PARK DAE-KYUN;BAEK CHANG-HO;HWANG WON;KIM KUN-SOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.118-125
    • /
    • 2006
  • The region responsible for replication of the megaplasmid pAtC58 in the nopaline-type Agrobacterium tumefaciens strain C58 was determined. A derivative ofa Co1E1 vector, pBluscript SK-, incapable of autonomous replication in Agrobacterium spp, was cloned with a 7.6-kb Bg1II-HindIII fragment from a cosmid clone of pAtC58, which contains a region adjacent to the operon for the utilization of deoxyfructosyl glutamine (DFG). The resulting plasmid conferred resistance to carbenicillin on the A. tumefaciens strain UIA5 that is a plasmidfree derivative of C58. The plasmid was stably maintained in the strain even after consecutive cultures for generations. Analysis of nested deletions of the 7.6-kb fragment showed that a 4.3-kb BglII-XhoI region sufficiently confers replication of the derivative of the ColE1 vector on UIA5. The region comprises three ORFs, which have high homologies with repA, repB, and repC of plasm ids in virulent Agrobacterium spp. including pTiC58, pTiB6S3, pTi-SAKURA, and pRiA4b as well as those of symbiotic plasmids from Rhizobium spp. Phylogenie analysis showed that rep genes in pAtC58 are more closely related to those in pRiA4 than to pTi plasmids including pTiC58, suggesting that the two inborn plasmids, pTiC58 and pAtC58, harbored in C58 evolved from distinct origins.

Genes for the Catabolism of Deoxyfructosyl Glutamine in pAtC58 Are Attributed to Utilization of Octopine in Agrobacterium tumefaciens Strain NT1

  • Baek, Chang-Ho;Park, Dae-Kyun;Lee, Ko-Eun;Hwang, Won;Kim, In-Hwang;Maeng, Jue-Son;Kim, Kun-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.822-828
    • /
    • 2004
  • Nopaline-type Agrobacterium tumefaciens strain C58 cannot utilize octopine (Oct) as the sole carbon and nitrogen sources. This strain harbors two plasmids; a virulent plasmid, pTiC58, and a megaplasmid, pAtC58. From strain NT1, which is a derivative of C58 harboring only pAtC58, we isolated spontaneous mutants that utilize Oct as the sole nitrogen source. These Oct-catabolizing mutants, however, could not utilize the opine as the sole carbon source. In contrast, strain UIA5, a plasmid-free derivative of C58, could not give rise to such mutants. The mutations isolated from NT1 were mapped to socR in pAtC58, which is a negative regulator of the soc operon responsible for the uptake and catabolism of an Amadori opine, deoxyfructosyl glutamine (Dfg). A derivative of UIA5 carrying a clone of the soc operon with a transposon inserted in socR also utilizes Oct as the sole nitrogen source. However, UIA5 harboring the operon with mutations in each of the structural genes in the soc operon, socA, B, C, and D, lost the ability to generate spontaneous Oct-utilizing mutants, suggesting that soc genes in pAtC58 are required for the utilization of Oct as a nitrogen source, and that derepressed expression of these genes allows cells to utilize Oct. In contrast, Oct-catabolizing mutants derived from C58, which grew using Oct as the sole nitrogen source, could also utilize the opine as the sole carbon source. These mutants did not carry any detectable mutations in socR or the region upstream to the gene in pAtC58, suggesting that mutations occurring elsewhere in the genome, most likely in pTiC58, allow the uptake and catabolism of the opine.

Biological control of grapevine crown gall (포도나무 줄기 혹병의 생물학적 방제)

  • Chung, Kwang-Jin;Shim, Jae-Seop;Chung, Bong-Koo
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.2
    • /
    • pp.97-101
    • /
    • 1998
  • Agrobacterium vitis causes a crown gall disease in grapevine and that is one of the major hindrances for the wide cultivation and production of grapevine. We studied the possibility of biological control using selected biological control agent. One isolate from the infected soil, named as strain 27, was able to inhibit the biovar 1; A. tumefaciens C58 and Ach5, biovar 2; A. rhizogenes 13264, and biovar 3; A. vitis, in vitro and in vivo test. The putative biological control agent, A. radiobacter strain 27 was carrying the plasmid and the size of isolated plasmid was very similar to that of pAgK84 of A. radiobacter K84.

  • PDF

Formation of Crown Gall Tumor in Panax ginseng C.A. Meyer (인삼의 Crown Gall Tumor형성에 관한 연구)

  • 최광태;양덕춘
    • Journal of Ginseng Research
    • /
    • v.10 no.1
    • /
    • pp.45-54
    • /
    • 1986
  • These studies were carried out to obtain the basic information about transformation of ginseng plant by potential vector system, utilization of opine compound by Agrobacterium sap. , and initiation of crown gall tumor callus. Crown gall tumors were induced from stem of Panax ginseng C.A. Meyer by infection of Agrobacterium tumefaciens. Therefore, it was clarified that transformation of ginseng by Ti plasmid was possible. The crown gall tumors induced by Agrobacterium tumefaciens isolated. from the soil were different in a shape, size, and growth rate. Especially, infection of ginseng by Agrobacterium tumefaciens Y104 led to the amorphic tumor, Tumor tissue derived from stem crown gall could not be continuously cultured on the medium which did not contain phytohormone, and did not form the callus even on the medium supplemented with 2,4-D. On the other hand, the root crown gall tumors formed the calli but the formation rate of callus was quite low. As for the utilization of octopine and nopaline, it was found that 3 strains of Agrobacterium app., Y104, Y110 and C58, utilized nopaline only, Y109 utilized octopine, and Y101 failed to utilize either compound.

  • PDF

Agrobacterium-mediated Transformation via Somatic Embryogenesis System in Korean fir (Abies koreana Wil.), A Korean Native Conifer

  • Lee, Hyoshin;Moon, Heung-Kyu;Park, So-Young
    • Korean Journal of Plant Resources
    • /
    • v.27 no.3
    • /
    • pp.242-248
    • /
    • 2014
  • This study was conducted to establish an efficient transformation system by using somatic embryogenesis in an important Korean native conifer, Korean fir (Abies koreana). Embryogenic masses were induced from mature zygotic embryos of the Korean fir on Schenk and Hildebrandt medium, which was supplemented with thidiazuron. For genetic transformation, the embryogenic masses were co-cultivated with a disarmed Agrobacterium tumefaciens strain C58/pMP90 containing the plasmid vector pBIV10 or LBA4404 containing the plasmid vector MP90. Both vectors contain the kanamycin resistance and beta-glucuronidase (GUS) reporter genes. A total of 48 lines of embryogenic masses were selected on mLV medium containing $50{\mu}g/mL$ of kanamycin after 4 weeks of culture, following 3 days of co-cultivation with A. tumefaciens strain C58/pMP90 carrying pBIV10 (none of the lines was cultivated with strain LBA4404 carrying MP90). Quantitative real-time PCR was performed, and high levels of GUS transcripts were observed in the 48 putative transgenic lines; however, the control (non-transgenic line) showed negative results. Results of histochemical staining showed that the expression of the GUS reporter gene was observed in somatic embryos that developed from the embryogenic masses of all 48 lines. Stably transformed cultures were successfully produced by co-cultivation with A. tumefaciens strain C58/pMP90 carrying pBIV10 in Korean fir. Here, we have reported an Agrobacterium-mediated gene transfer protocol via somatic embryogenesis that may be helpful in developing breeding and conservation strategies for the Korean fir.

Identification of Agrobacterium tumefaciens from Soil and Transformation of Maize (토양으로부터의 Agrobacterium tumefaciens의 분리, 동정 및 옥수수의 형질전환에 이용)

  • 노광수;강봉중
    • KSBB Journal
    • /
    • v.7 no.3
    • /
    • pp.191-200
    • /
    • 1992
  • Several strains of Agrobacterium tumefaciens were isolated from soil in the Taegu area and characterized to develop some useful vector systems for higher plant genetic engineering. The selected colonies had a unique form, and strains from the colonies were capable of tumor formation on the sunflower leaf surface. They had a large plasmid. The restriction analysis showed that they were another kinds of Ti plasmic compared with C58 and Ach5. The isolated strains were identified as the nopaline type and also as biovar 1 A. tumefaciens, according to their tumor morphology, blophyslcal and biochemical characteristics. One of the isolated strains, AK204 was transformed with binary vector (pGA642), having selectable marker (Kmr, Tcr). Furthermore, maize tissue cells were transformed by cocultivation with AK204/pGA642, and the transformants were selected on the selective medium and identified using PAGE patterns of their soluble proteins.

  • PDF

Agrobacterium tumefaciens Mediated Genetic Transformation of Pigeonpea [Cajanus cajan (L.) Millsp.]

  • Kumar, S.Manoj;Syamala, D.;Sharma, Kiran K.;Devi, Prathibha
    • Journal of Plant Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.69-75
    • /
    • 2004
  • Optimal protocol for efficient genetic transformation has been defined to aid future strategies of genetic engineering in pigeon pea with agronomically important genes. Transgenic pigeonpea plants were successfully produced through Agrobacterium tumefaciens-mediated genetic transformation method using cotyledonary node explants by employing defined culture media. The explants were co-cultivated with A. tumefaciens strain C-58 harboring the binary plasmid, pCAMBIA-1301 [con-ferring $\beta$-glucuronidase(GUS) activity and resistance to hygromycin] and cultured on selection medium (regeneration medium supplemented with hygromycin) to select putatively transformed shoots. The shoots were then rooted on root induction medium and transferred to pots containing sand and soil mixture in the ratio of 1:1. About 22 putative TO transgenic plants have been produced. Stable expression and integration of the transgenes in the putative transgenics were confirmed by GUS assay, PCR and Southern blot hybridization with a transformation efficiency of over 45%. Stable integration and expression of the marker gene has been confirmed in the TO and T1 transgenics through PCR, and Southern hybridization.

Expression and Characterization of a New Esterase Cloned Directly from Agrobacterium tumefaciens Genome

  • PARK HYO-JUNG;KIM YOUNG-JUN;KIM HYUNG-KWOUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.145-148
    • /
    • 2006
  • A new functional lipolytic enzyme (AT4) has recently been found from Agrobacterium tumefaciens C58 Cereon using a genome-wide approach. The enzyme has some sequence similarity to E. coli acetyl hydrolase, Emericella nidulans lipase, Moraxella sp. lipase, Acinetobacter lwoffii esterase, and Streptomyces hygroscopicus acetyl hydrolase. However, the sequence similarities are very low (less than $25\%$), suggesting that it is a new lipase/esterase enzyme. ill the present study, intact cell of the A. tumefaciens strain was shown to have lipolytic activity on a tributyrin-LB plate. The AT4 gene was then expressed at a high level in E. coli BL21 (DE3) cells and the enzyme was purified simply by Ni-NTA column chromatography. The purified enzyme showed hydrolytic activity toward p-nitrophenyl caproate, but not toward olive oil, suggesting that the AT4 enzyme was a typical esterase rather than lipase. AT4 esterase had a maximum hydrolytic activity at $45^{\circ}C$ and pH 8.0, when p-nitrophenyl caproate was used as a substrate. It was relatively stable up to $40^{\circ}C$ and at pH 5.0-9.0. Calcium ion and EDT A did not affect the activity and thermal stability of the enzyme. As for substrate specificity, AT4 enzyme could rapidly hydrolyze acetyl and butyl groups from p-nitrophenyl esters and 1-naphthyl esters. In addition, it also released acetyl residues from acetylated glucose and xylose substrates. Therefore, this new esterase enzyme might be used as a biocatalyst in acetylation and deacetylation reactions performed in the fine chemical industry.

Characteristics of the Growth of Ginseng Tumor Callus (인삼 Tumor Callus의 생장 특성)

  • 최광태;양덕춘
    • Journal of Ginseng Research
    • /
    • v.11 no.1
    • /
    • pp.56-65
    • /
    • 1987
  • Grown-gall tumor was induced from the infection of Panax ginseng C.A. Meyer by Agrobacterium tumefaciens C58 and the tumor calli were formed on the phytohormone free MS medium. The calli were friable and rough in appearance. Calli obtained from crown gall tumor were similar to and indistinguishable from each other. The tumor callus was quite different from normal callus. Tumor callus grew rapidly, whereas mal callus appeared late. The growth of tumor callus was better in the dark than in the light. In suspension culture, the fresh weight of tumor callus was twice as much in comparison with normal callus.

  • PDF