• Title/Summary/Keyword: A. solani.

Search Result 434, Processing Time 0.022 seconds

Effect of Ent-norsecurinine, an Alkaloid, on Spore Germination of Some Fungi

  • Goel, Mitul;Maurya, S.;Pandey, V.B.;Singh, V.P.;Singh, A.K.;Singh, U.P.
    • Mycobiology
    • /
    • v.30 no.4
    • /
    • pp.225-227
    • /
    • 2002
  • The inhibitory activity of ent-norsecurinine alkaloid was evaluated against spore germination of some plant pathogenic fungi(Curvularia maculans, Curvularia species, C. palliscens, Colletotrichum gloeosporioides, Colletotrichum species, Afternaria solani, A. brassicae, Fusarium udum, Helminthosporium echinoclova and H. penniseti). It inhibited spore germination of all the test fungi. C. maculans, C. species, and C. palliscens were the most sensitive as complete inhibition of spore germination was observed at 1000 ppm. A. solani was not inhibited by this chemical.

Control Efficacy of Streptomyces sp. A501 against Ginseng Damping-off and Its Antifungal Substance

  • Minh, Nguyen Van;Woo, E-Eum;Lee, Gang-Seon;Ki, Dae-Won;Lee, In-Kyoung;Lee, Sang-Yeob;Park, Kyeonghun;Song, Jaekyeong;Choi, Jae Eul;Yun, Bong-Sik
    • Mycobiology
    • /
    • v.45 no.1
    • /
    • pp.44-47
    • /
    • 2017
  • Ginseng damping-off, caused by the fungal pathogens Rhizoctonia solani and Pythium sp., is a critical disease in ginseng seedling. In a continuing effort to find microorganisms with the potential of acting as a biocontrol agent against Rhizoctonia damping-off, we found that a Streptomyces sp. A501 showed significant antifungal activity against Rhizoctonia solani. In field experiment to test the efficacy of Streptomyces sp. A501 in controlling ginseng damping-off, the incidence of damping-off disease was meaningfully reduced when ginseng seeds were soaked in the culture broth of Streptomyces sp. A501 before sowing. To perform characterization of the antifungal compound, we isolated it from the culture broth of strain A501 through Diaion HP-20 and silica gel column chromatographies and preparative high-performance liquid chromatography. The structure of the antifungal compound was assigned as fungichromin by spectroscopic methods, mainly nuclear magnetic resonance and electrospray ionization-mass analysis.

Role of Chitinase Produced by Chromobacterium violaceum in the Suppression of Rhizoctonia Damping-off (모잘록병(Rhizoctonia solani)의 억제에 있어서 Chromobacterium violaceum이 생산하는 Chitinase의 역할)

  • 박서기;이효연;김기청
    • Korean Journal Plant Pathology
    • /
    • v.11 no.4
    • /
    • pp.304-311
    • /
    • 1995
  • To determine whether chitinolytic enzymes from Chromobacterium violaceum C-61 play an important role in the suppression of Rhizoctonia damping-off, Tn5 insertion mutants deficient in chitinolytic activity (Chi a- mutants) were selected and their chitinolytic and disease suppression were compared with those of the parental strain. Four Chi a- mutants selected from about 2,000 transconjugants did not inhibit mycelial growth of Rhizoctonia solani on nutrient agar-potato dextrose agar (BA-PDA) and their abilities to suppress Rhizoctonia damping-off were much lower than the parental strain. However, population density in the eggplant rhizosphere did not differ significantly between the parental strain and four Chi a- mutants. The crude enzyme of the parental strain inhibited growth of R. solani on NA-PDA and its chitinase activity was much higher than that of Chi a- mutants. But the N,N' -diacetylchitobiase activity between these isolates were not significantly different. The chitinase of Chi a- mutants was defective in 2 isoforms of 52- and 37-kDa among four isoforms of 54-, 52-, 50- and 37-kDa. A Tn5 element was inserted into one site of 10 kb EcoRI fragment of chromosomal DNA in three Chi- mutants, C61-C1, -C2, and -C3. In C61-C4 mutant, a Tn5 element was inserted into two sites of 10 kb and 4.4 kb EcoRI fragments. These results suggest that the chitinase of C. violaceum C-61 play an important role in the suppression of Rhizoctonia damping-off of cucumber and eggplant.

  • PDF

Control of Ginseng Damping-off by Streptomyces sp. A75 and A501 (Streptomyces sp. A75와 A501 균주의 인삼 잘록병에 대한 방제효과)

  • Lee, Sang Yeob;Song, Jaekyeong;Yun, Bong-Sik;Park, Kyeong hun;Kim, Jeong Jun;Han, Ji Hee
    • The Korean Journal of Mycology
    • /
    • v.44 no.4
    • /
    • pp.330-337
    • /
    • 2016
  • Streptomyces sp. A75 and A501 inhibited the mycelial growth of pathogenic Rhizoctonia solani and Pythium sp., which cause the ginseng disease known as damping-off. Three methods were evaluated for the control of these pathogens, using a mixture of the culture broths from Streptomyces sp. A75 and A501. The methods tested were seed dipping with 50-fold diluted broth, drenching of soil with 100-fold diluted broth after sowing, and combined seed dipping and drenching. These methods reduced the incidence of ginseng damping-off caused by R. solani by 81.3%, 84.8%, and 32.2% and that caused by Pythium sp. by 51.0%, 52.1%, and 75.3%, respectively. Based on these results, the combination of seed dipping and soil drenching after sowing using a mixture of the culture broths from Streptomyces sp. A75 and A501 effectively reduced the incidence of damping-off in ginseng.

Occurrence of Stem and Fruit Rot of Paprika Caused by Nectria haematococca

  • Jee, Hyeong-Jin;Ryu, Kyung-Yeol;Shim, Chang-Ki;Nam, Ki-Woong
    • The Plant Pathology Journal
    • /
    • v.21 no.4
    • /
    • pp.317-321
    • /
    • 2005
  • Since 2000 severe rots on aerial and underground parts of paprika (Capsicum annum L.) has occurred in most surveyed glasshouses throughout the country. A total of 56 isolates of a fungus were consistently isolated from various plant parts such as fruit, stem, branch, and root collected from 16 farms in five provinces. Anamorph stage of the fungus was identified as Fusarium solani based on its morphological characteristics. However, the fungus readily produced a sexual structure of perithecia on infected plant tissues and on agar media. Since the fungus formed abundant perithecium by a single isolate, it was considered as a homothallic strain of Nectria haematococca, the teleomorph of F. solani. Irregularly globose perithecia with orange to red color formed sparsely to gregariously on dead tissues of fruits and basal stems at the late infection stage, which is a diagnostic sign for the disease. Perithecia ranged from 125 to 220 ${\mu}m$ in diameter varied among isolates. Asci enveloping eight ascospores were cylindrical and measured 60-80x8-12 ${\mu}m$. Ellipsoid to obovate ascospores are two-celled and measured 11-18x4-7 ${\mu}m$. Ascospores were hyaline, slightly constricted at the central septum, and revealed longitudinal striations that is characteristic of the species. This fungus that has never been reported in Korea has previously become a threat to paprika cultivation because of its strong pathogenicity and nationwide distribution.

Comparison of Susceptibility of Asparagus (Asparagus officinalis L.) Plantlets and Seedlings to Different Fusarium Speices (아스파라거스(Asparagus officinalis L.) 유묘와 기내배양 식물체의 Fusarium species에 대한 감수성 비교)

  • 이윤수
    • Korean Journal Plant Pathology
    • /
    • v.10 no.2
    • /
    • pp.140-143
    • /
    • 1994
  • Comparison of susceptibility of asparagus (Asparagus officinalis L.) seedlings and plantlets to different fusarial species was made to determine whether in vitro propagated asparagus plantlets can be used as a substitute for seedlings in histopathological study on the infection processes of Fusarium species to asparagus. Fusarium oxysporum was isolated most frequently (50% of the total) from lesions of root and crown rot of asparagus cultivated in the field followed by F. moniliforme (8.8% of the total) and F. solani (2.9% of the total). Plantlets and seedlings of all asparagus were susceptible to f. moniliforme and F. oxysporum isolates, but those were not susceptible to both avirulent F. oxysporum (AVFO) and F. solani in pathogenicity tests. Overall, there were no differences between seedlings and plantlets in the susceptibility to virulent fusarial infections. In vitro propagated asparagus plantlets, therefore, could be used as a substitute for seedlings in histopathological study on the infection processes of Fuasrium species to asparagus.

  • PDF

Control of Crisphead Lettuce Damping-off and Bottom Rot by Seed Coating with Alginate and Pseudomonas aeruginosa LY-11

  • Heo, Kwang-Ryool;Lee, Kwang-Youll;Lee, Sang-Hyun;Jung, Soon-Je;Lee, Seon-Woo;Moon, Byung-Ju
    • The Plant Pathology Journal
    • /
    • v.24 no.1
    • /
    • pp.67-73
    • /
    • 2008
  • Seedling damping-off and bottom rot caused by Rhizoctonia solani are yield limiting diseases of crisphead lettuce. To provide biocontrol measure in the management of the diseases, biocontrol strain Pseudomonas aeruginosa LY-11 was isolated from lettuce rhizosphere and introduced into crisphead lettuce rhizosphere by the seed coating delivery method. Alginate was used as a coating material to generate beads containing $10^6-10^{6.5}$ colony-forming units (CFUs) of viable bacterial cells of LY-11. When seeds germinated from the alginate beads containing the strain LY-11, the bacteria established mostly in plant rhizosphere to maintain at least $10^4$ CFU per gram of plant tissues. Crisphead lettuce seedlings germinated from the entrapped seeds were less affected from damping-off and bottom rot with disease control values of 70.4% and 85.4% respectively. Although P. aeruginosa LY-11 colonized plant rhizosphere and not phyllosphere, the result indicated that bottom rot caused by the foliar inoculation of R. solani was effectively reduced by the rhizobacteria. All data suggested that immobilized rhizobacterial application in seeds by alginate coating could control damping-off and induce induced systemic resistance of crisphead lettuce to reduce bottom rot.

Transcriptome analyses of the ginseng root rot pathogens Cylindrocarpon destructans and Fusarium solani to identify radicicol resistance mechanisms

  • Li, Taiying;Kim, Jin-Hyun;Jung, Boknam;Ji, Sungyeon;Seo, Mun Won;Han, You Kyoung;Lee, Sung Woo;Bae, Yeoung Seuk;Choi, Hong-Gyu;Lee, Seung-Ho;Lee, Jungkwan
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.161-167
    • /
    • 2020
  • Background: The ascomycete fungi Cylindrocarpon destructans (Cd) and Fusarium solani (Fs) cause ginseng root rot and significantly reduce the quality and yield of ginseng. Cd produces the secondary metabolite radicicol, which targets the molecular chaperone Hsp90. Fs is resistant to radicicol, whereas other fungal genera associated with ginseng disease are sensitive to it. Radicicol resistance mechanisms have not yet been elucidated. Methods: Transcriptome analyses of Fs and Cd mycelia treated with or without radicicol were conducted using RNA-seq. All of the differentially expressed genes (DEGs) were functionally annotated using the Fusarium graminearum transcript database. In addition, deletions of two transporter genes identified by RNA-seq were created to confirm their contributions to radicicol resistance. Results: Treatment with radicicol resulted in upregulation of chitin synthase and cell wall integrity genes in Fs and upregulation of nicotinamide adenine dinucleotide dehydrogenase and sugar transporter genes in Cd. Genes encoding an ATP-binding cassette transporter, an aflatoxin efflux pump, ammonium permease 1 (mep1), and nitrilase were differentially expressed in both Fs and Cd. Among these four genes, only the ABC transporter was upregulated in both Fs and Cd. The aflatoxin efflux pump and mep1 were upregulated in Cd, but downregulated in Fs, whereas nitrilase was downregulated in both Fs and Cd. Conclusion: The transcriptome analyses suggested radicicol resistance pathways, and deletions of the transporter genes indicated that they contribute to radicicol resistance.

Effects of Temperature on the Development and Reproduction of Four Species of Aphids (Hemiptera: Aphididae) Damaging Cereal Crops (식량작물에 피해를 주는 진딧물 4종의 발육과 번식에 미치는 온도의 영향)

  • Ahn, Jeong Joon;Choi, Kyung San;Seo, Bo Yoon;Jung, Jin Kyo
    • Korean journal of applied entomology
    • /
    • v.60 no.4
    • /
    • pp.339-355
    • /
    • 2021
  • Aphids can damage plants directly by absorbing their phloem sap and indirectly by transferring plant viruses and causing sooty mold. We compared the thermal effect on the development, survivorship, and reproduction of four cereal crop-damaging aphid species, Rhopalosiphum padi, Aulacorthum solani, Aphis craccivora, and Acyrthosiphon pisum using a life table analysis method. We investigated the stage-specific development period, survivorship, adult longevity, and fecundity of the above mentioned four aphids at 10, 15, 20, 25, and 30℃, respectively, and analyzed their life table parameters using the age-stage, two-sex life table analysis. A. solani nymphs could not complete their development to adulthood at 30℃. The intrinsic increase rate of R. padi was the highest at all tested temperatures except for that at 15℃ (0.12, 0.34, 0.47, and 0.32 at 10, 20, 25, and 30℃, respectively), and that of A. pisum displayed negative values at 30℃ (-0.04). It is speculated that R. padi would be a dominant species under high temperature conditions and A. solani is a highly adaptive species at low temperatures through the comparative analysis of the life table parameters of four aphid species damaging to cereal crops.

Physiological Responses of Soybean Cultivars to Fusarium solani f. sp. glycines Causing Sudden Death Syndrome

  • Joon Hyeong, Cho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.4
    • /
    • pp.373-381
    • /
    • 1999
  • Six soybean cultivars having different SDS susceptibility were planted with sorghum seedinoculum infested with F. solani isolate 171 in the greenhouse. First leaf symptoms appeared on unifoliar leaves at 9 days after inoculation and all cultivars showed the typical leaf symptoms at 13 days after inoculation, when trifoliar leaves emerged. Leaf symptoms development in susceptible cultivars was faster than in resistant cultivars. Leaf symptom severities during the period of 25 to 29 days after inoculation showed a significant difference between cultivars which had SDS resistance and sus ceptibility. In this period, area under the diseaseprogress curve (AUDPC) of Hartz 6686 was the highest and that of PI 520733 was the lowest. SDS caused serious damage to the growth of soybean in all cultivars. Average reductions of growth rate of root fresh weight and dry weight were greater than those of plant tops. Duyu-kong showed less severe leaf symptoms than that of SDS suscetible cultivars; however, average growth rate of plants top and roots of this cultivar was less but not significantly different than those of SDS susceptible cultivars. In all cultivars, as severity of leaf symptoms increased, plant top weight decreased. Root rot symptoms were observed in all cultivars before leaf symptoms appeared. Average proportions of tap root reddish-brown discoloration of all cultivars was up to 75 % at 15 days after inoculati on; however there was no significant differenc between cultivars at each rating date. Appearances of leaf symptoms on leaves varied in each cultivar. SDS resistant cultivars had a significantly higher level of crinkling than susceptible cultivars and SDS susceptible cultivars had a significantly higher level of necrosis than resistant cultivars. Further study will be needed to identify the relationships between the physiological growth rate and SDS severities in soybeans.

  • PDF