• Title/Summary/Keyword: A-glycerol-3-phosphate dehydrogenase

Search Result 41, Processing Time 0.027 seconds

Isolation and Properties of Cytoplasmic α-Glycerol 3-Phosphate Dehydrogenase from the Pectoral Muscle of the Fruit Bat, Eidolon helvum

  • Agboola, Femi Kayode;Thomson, Alan;Afolayan, Adeyinka
    • BMB Reports
    • /
    • v.36 no.2
    • /
    • pp.159-166
    • /
    • 2003
  • Cytoplasmic $\alpha$-glycerol-3-phosphate dehydrogenase from fruit-bat-breast muscle was purified by ion-exchange and affinity chromatography. The specific activity of the purified enzyme was approximately 120 units/mg of protein. The apparent molecular weight of the native enzyme, as determined by gel filtration on Sephadex G-100 was $59,500{\pm}650$ daltons; its subunit size was estimated to be $35,700{\pm}140$ by SDS-polyacrylamide gel electrophoresis. The true Michaelis-Menten constants for all substrates at pH 7.5 were $3.9{\pm}0.7\;mM$, $0.65{\pm}0.05\;mM$, $0.26{\pm}0.06\;mM$, and $0.005{\pm}0.0004\;mM$ for L-glycerol-3-phosphate, $NAD^+$, DHAP, and NADH, respectively. The true Michaelis-Menten constants at pH 10.0 were $2.30{\pm}0.21\;mM$ and $0.20{\pm}0.01\;mM$ for L-glycerol-3-phosphate and $NAD^+$, respectively. The turnover number, $k_{cat}$, of the forward reaction was $1.9{\pm}0.2{\times}10^4\;s^{-1}$. The treatment of the enzyme with 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) under denaturing conditions indicated that there were a total of eight cysteine residues, while only two of these residues were reactive towards DTNB in the native enzyme. The overall results of the in vitro experiments suggest that $\alpha$-glycerol-3-phosphate dehydrogenase of the fruit bat preferentially catalyses the reduction of dihydroxyacetone phosphate to glycerol-3-phosphate.

Proteomic and Phenotypic Analyses of a Putative Glycerol-3-Phosphate Dehydrogenase Required for Virulence in Acidovorax citrulli

  • Kim, Minyoung;Lee, Jongchan;Heo, Lynn;Lee, Sang Jun;Han, Sang-Wook
    • The Plant Pathology Journal
    • /
    • v.37 no.1
    • /
    • pp.36-46
    • /
    • 2021
  • Acidovorax citrulli (Ac) is the causal agent of bacterial fruit blotch (BFB) in watermelon, a disease that poses a serious threat to watermelon production. Because of the lack of resistant cultivars against BFB, virulence factors or mechanisms need to be elucidated to control the disease. Glycerol-3-phosphate dehydrogenase is the enzyme involved in glycerol production from glucose during glycolysis. In this study, we report the functions of a putative glycerol-3-phosphate dehydrogenase in Ac (GlpdAc) using comparative proteomic analysis and phenotypic observation. A glpdAc knockout mutant, AcΔglpdAc(EV), lost virulence against watermelon in two pathogenicity tests. The putative 3D structure and amino acid sequence of GlpdAc showed high similarity with glycerol-3-phosphate dehydrogenases from other bacteria. Comparative proteomic analysis revealed that many proteins related to various metabolic pathways, including carbohydrate metabolism, were affected by GlpdAc. Although AcΔglpdAc(EV) could not use glucose as a sole carbon source, it showed growth in the presence of glycerol, indicating that GlpdAc is involved in glycolysis. AcΔglpdAc(EV) also displayed higher cell-to-cell aggregation than the wild-type bacteria, and tolerance to osmotic stress and ciprofloxacin was reduced and enhanced in the mutant, respectively. These results indicate that GlpdAc is involved in glycerol metabolism and other mechanisms, including virulence, demonstrating that the protein has pleiotropic effects. Our study expands the understanding of the functions of proteins associated with virulence in Ac.

Regulation and Expression of Glycerol-3-phosphate Dehydrogerlase (GPDH) in Drosophila melanogaster (노랑초파리의 $\alpha$-Glycerol-3-phosphate Dehydrogenase (GPDH)의 발현과 조절)

  • 김세재;이정주남궁용김경진
    • The Korean Journal of Zoology
    • /
    • v.34 no.1
    • /
    • pp.123-130
    • /
    • 1991
  • Several parameters of u -glycerol-3-pholphate dehydrogenase (GPDH) such as activity, content and translatable mRNA levels were measured to elucidate mechanism underlving developmental and tissue specific regulation of 6PDH activity in Drosophila melonogastrr. In adult segments, most of total GPDH activity (62%1 Iwas detected in thorax where GPDH-1 resided, while 32% of total GPDH aUiviD was only detected in abdomen where GPDH-3 resided. The relative synthesis of GPDH was, however, similar in both tissues, although 58% of total GPDH was synthesized in abdomen. These results strongly suggest that the turnover rate of the abdominal enzyme (GPDH-3) was much more rapid than that of thoracic enzymes (GPDH-1). In nitro translation and immunoblotting experiments also indicate that GPDH-3 was arised by posttranslational modification from a single polypeptide (GPDH-1).

  • PDF

Cofactor Regeneration Using Permeabilized Escherichia coli Expressing NAD(P)+-Dependent Glycerol-3-Phosphate Dehydrogenase

  • Rho, Ho Sik;Choi, Kyungoh
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1346-1351
    • /
    • 2018
  • Oxidoreductases are effective biocatalysts, but their practical use is limited by the need for large quantities of NAD(P)H. In this study, a whole-cell biocatalyst for NAD(P)H cofactor regeneration was developed using the economical substrate glycerol. This cofactor regeneration system employs permeabilized Escherichia coli cells in which the glpD and gldA genes were deleted and the gpsA gene, which encodes $NAD(P)^+-dependent$ glycerol-3-phosphate dehydrogenase, was overexpressed. These manipulations were applied to block a side reaction (i.e., the conversion of glycerol to dihydroxyacetone) and to switch the glpD-encoding enzyme reaction to a gpsA-encoding enzyme reaction that generates both NADH and NADPH. We demonstrated the performance of the cofactor regeneration system using a lactate dehydrogenase reaction as a coupling reaction model. The developed biocatalyst involves an economical substrate, bifunctional regeneration of NAD(P)H, and simple reaction conditions as well as a stable environment for enzymes, and is thus applicable to a variety of oxidoreductase reactions requiring NAD(P)H regeneration.

Production of 1,2-Propanediol from Glycerol in Saccharomyces cerevisiae

  • Jung, Joon-Young;Yun, Hyun-Shik;Lee, Jin-Won;Oh, Min-Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.8
    • /
    • pp.846-853
    • /
    • 2011
  • Glycerol has become an attractive carbon source in the biotechnology industry owing to its low price and reduced state. However, glycerol is rarely used as a carbon source in Saccharomyces cerevisiae because of its low utilization rate. In this study, we used glycerol as a main carbon source in S. cerevisiae to produce 1,2-propanediol. Metabolically engineered S. cerevisiae strains with overexpression of glycerol dissimilation pathway genes, including glycerol kinase (GUT1), glycerol 3-phosphate dehydrogenase (GUT2), glycerol dehydrogenase (gdh), and a glycerol transporter gene (GUP1), showed increased glycerol utilization and growth rate. More significant improvement of glycerol utilization and growth rate was accomplished by introducing 1,2-propanediol pathway genes, mgs (methylglyoxal synthase) and gldA (glycerol dehydrogenase) from Escherichia coli. By engineering both glycerol dissimilation and 1,2-propanediol pathways, the glycerol utilization and growth rate were improved 141% and 77%, respectively, and a 2.19 g 1,2- propanediol/l titer was achieved in 1% (v/v) glycerolcontaining YEPD medium in engineered S. cerevisiae.

Perilla Leaf Extract Inhibits 3T3-L1 Preadipocytes Differentiation

  • Kim, Mi-Ja;Kim, Hye-Kyung
    • Food Science and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.928-931
    • /
    • 2009
  • Effects of perilla leaf extracts (PLE) on adipocytes differentiation of 3T3-L1 cells were examined. Ethanol extract of PLE treatment significantly decreased lipid accumulation, a marker of adipogenesis, in a dose-dependent manner. Moreover, gene expression levels of peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$), the key adipogenic transcription factor, were markedly decreased by PLE. PLE also suppressed adipocyte fatty acid binding protein (aP2) and glycerol-3-phosphate dehydrogenase (GPDH), which are adipogenic marker proteins. These results suggest that PLE treatment suppressed differentiation of 3T3-L1 adipocytes, in part by down-regulating expression of adipogenic transcription factor and other specific target genes.

Effect of Garlic Oil on Fatty Acid Accumulation and Glycerol-3-Phosphate Dehydrogenase Activity in Differentiating Adipocytes

  • He, M.L.;Yang, W.Z.;You, J.S.;Chaves, A.V.;Mir, P.S.;Benchaar, C.;McAllister, T.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.12
    • /
    • pp.1686-1692
    • /
    • 2009
  • Garlic oil (GAR, Allium sativum L.) has been studied as a feed additive to improve animal production performance and decrease methane emission in ruminants. The present study was designed to determine the possible effect of GAR on fatty acid composition and accumulation in animal fat tissue using a cell model. 3T3-L1 preadipocytes at $2{\times}10^{4}\;mL^{-1}$ were seeded to 24-well plates and allowed to proliferate to reach confluence. The cells were then treated with media containing 0, 2.5, 5, 10, 20 and 40 $\mu{g}$ $mL^{-1}$ of GAR during the differentiation period for 8 days. Media containing dexamethasone, methyl-isobutylxanthine and insulin was applied during the first 2 days of the early differentiation period. On day 8 sub-sets of the wells were stained with oil red-O and the remaining cells were harvested for determination of glycerol-3-phosphate dehydrogenase [EC 1.1.1.8] (GPDH) activity (n = 6) and cellular fatty acid concentration (n = 6). It was found that supplementation of GAR increased (p<0.05) the ratio of monounsaturated fatty acids/saturated fatty acids in the adipocytes and showed inhibitory effect (p<0.05) on the post-confluent proliferation. With relative low dosage, GAR (5-20 $\mu{g}$ $mL^{-1}$) increased (p<0.05) the GPDH activity without affecting the cellular fatty acid concentration, while a high dosage (40 $\mu{g}$ $mL^{-1}$) inhibited (p<0.05) fatty acid accumulation and decreased GPDH activity. Supplementation of GAR had an effect on cell post-confluent proliferation, differentiation and fatty acid accumulation. However, the effect may be diverse and depends on the dose applied.

Isozyme Variability in Three Species of Freshwater Planorbid Snails in Korea : Gyraulus convexiusculus , Hippeutis cantori and Segmentina hemisphaerula (한국산 또아리물달팽이과 ( family Planorbidae ) 3종에서의 동위 효소 변이)

  • 정평림;정영헌;김기선
    • The Korean Journal of Malacology
    • /
    • v.11 no.1
    • /
    • pp.51-61
    • /
    • 1995
  • A horizontal starch gal electrophoresis for enzyme proteins extracted from 3 species of Korean planorbid snails; Gyraulus convexiusculus, Hippeutis cantori and Segmentina hemisphaerula was carried out in order to elucidate their genetic relationships.The results from 12 enzymes employed in three different kinds of buffer systems are summarized as follows:1) Two loci from each enzyme of aldehyde oxidase, esterase, glucose phosphate isomerase. isocitrate dehydrogenase, leucine aminopeptidase, malate dehyogenase, peptidase and xanthine oxidase were detected, and only one locus was observed from each of the following four enzymes: 6-phosphogluconate dehydrogenase, glyceraldehyde-phosphate dehydrogenase, glutamate oxaloacetate transaminase and glycerol-3-phosphate dehydrogenase.2) Most of loci in 3 species of planorbid snails employed showed homozygous and monomorphic banding patterns and some of them were specifis as genetic markers among different species. However, a few of loci (EST-1. EST-2 and GPI-2)showed polymorphic banding patterns. 3)Hippeutis cantori and Segmentina hemisphaerula were more closely clustered in a dendrogram with the genetic iddentity value of 0.431, and these two species were lineated with Gyraulus convexiusculus as another cluster at the value of 0.294.In summarizing the above results, three species of Korean planorbid snails employed in this study mostly showed monomorphic enzyme protein banding patterns and genetic differences specific among 3 species.

  • PDF

Enhancement of Clavulanic Acid Production by Expressing Regulatory Genes in gap Gene Deletion Mutant of Streptomyces clavuligerus NRRL3585

  • Jnawali, Hum Nath;Lee, Hei-Chan;Sohng, Jae-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.146-152
    • /
    • 2010
  • Streptomyces clavuligerus NRRL3585 produces a clinically important $\beta$-lactamase inhibitor, clavulanic acid (CA). In order to increase the production of CA, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene (gap) was deleted in S. clavuligerus NRRL3585 to overcome the limited glyceraldehyde-3-phosphate pool; the replicative and integrative expressions of ccaR (specific regulator of the CA biosynthetic operon) and claR (Lys-type transcriptional activator) genes were transformed together into a deletion mutant to improve clavulanic acid production. We constructed two recombinant plasmids to enhance the production of CA in the gap1 deletion mutant of S. clavuligerus NRRL3585: pHN11 was constructed for overexpression of ccaR-claR, whereas pHN12 was constructed for their chromosomal integration. Both pHN11 and pHN12 transformants enhanced the production of CA by 2.59-fold and 5.85-fold, respectively, compared with the gap1 deletion mutant. For further enhancement of CA, we fed the pHN11 and pHN12 transformants ornithine and glycerol. Compared with the gap1 deletion mutant, ornithine increased CA production by 3.24- and 6.51-fold in the pHN11 and pHN12 transformants, respectively, glycerol increased CA by 2.96- and 6.21-fold, respectively, and ornithine and glycerol together increased CA by 3.72- and 7.02-fold, respectively.

Hepatic transcriptional changes in critical genes for gluconeogenesis following castration of bulls

  • Fassah, Dilla Mareistia;Jeong, Jin Young;Baik, Myunggi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.4
    • /
    • pp.537-547
    • /
    • 2018
  • Objective: This study was performed to understand transcriptional changes in the genes involved in gluconeogenesis and glycolysis pathways following castration of bulls. Methods: Twenty Korean bulls were weaned at average 3 months of age, and castrated at 6 months. Liver tissues were collected from bulls (n = 10) and steers (n = 10) of Korean cattle, and hepatic gene expression levels were measured using quantitative real-time polymerase chain reaction. We examined hepatic transcription levels of genes encoding enzymes for irreversible reactions in both gluconeogenesis and glycolysis as well as genes encoding enzymes for the utilization of several glucogenic substrates. Correlations between hepatic gene expression and carcass characteristics were performed to understand their associations. Results: Castration increased the mRNA (3.6 fold; p<0.01) and protein levels (1.4 fold; p<0.05) of pyruvate carboxylase and mitochondrial phosphoenolpyruvate carboxykinase genes (1.7 fold; p<0.05). Hepatic mRNA levels of genes encoding the glycolysis enzymes were not changed by castration. Castration increased mRNA levels of both lactate dehydrogenase A (1.5 fold; p<0.05) and lactate dehydrogenase B (2.2 fold; p<0.01) genes for lactate utilization. Castration increased mRNA levels of glycerol kinase (2.7 fold; p<0.05) and glycerol-3-phosphate dehydrogenase 1 (1.5 fold; p<0.05) genes for glycerol utilization. Castration also increased mRNA levels of propionyl-CoA carboxylase beta (mitochondrial) (3.5 fold; p<0.01) and acyl-CoA synthetase short chain family member 3 (1.3 fold; p = 0.06) genes for propionate incorporation. Conclusion: Castration increases transcription levels of critical genes coding for enzymes involved in irreversible gluconeogenesis reactions from pyruvate to glucose and enzymes responsible for incorporation of glucogenic substrates including lactate, glycerol, and propionate. Hepatic gluconeogenic gene expression levels were associated with intramuscular fat deposition.