• Title/Summary/Keyword: A-factor

Search Result 58,919, Processing Time 0.062 seconds

A Study on the Effective Enhancement of the Load Power Factor Using the Load Power Factor Sensitivity of Generation Cost (부하역률 감도기법 적용에 의한 효율적인 부하역률 개선에 관한 연구)

  • Lee Byung Ha;Kim Jung-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.1
    • /
    • pp.18-24
    • /
    • 2005
  • Various problems such as the increase of the power loss and the voltage instability may often occur in the case of low load power factor. The demand of reactive power increases continuously with the growth of active power and the restructuring of electric power companies makes the comprehensive management of reactive power a troublesome problem, so that the systematic control of load power factor is required. In this paper, the load power factor sensitivity of the generation cost is derived and it is used for determining the locations of reactive power compensation devices effectively and for enhancing the load power factor appropriately. In addition, the voltage variation penalty cost is introduced and the integrated costs including the voltage variation penalty cost are used for determining the value of the load power factor from the point of view of the economic investment and voltage regulation. It is shown through the application to a large-scale power system that the load power factor can be enhanced effectively and appropriately using the load power factor sensitivity and integrated costs.

Test Results of Friction Factor for Round-Hole Roughness Surfaces in Closely Spaced Channel Flow of Water

  • Ha, Tae Woong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1849-1858
    • /
    • 2004
  • For examining friction-factor characteristics of round-hole pattern surfaces which are usually applied on damper seals, flat plate test apparatus is designed and fabricated. The measurement method of leakage and pressure distribution along round-hole pattern specimen with different hole area is described and a method for determining the Fanning friction factor is discussed. Results show that the round-hole pattern surfaces provide a much larger friction factor than smooth surface, and the friction factor vs. clearance behavior yields that the friction factor generally decreases as the clearance increases unlike the results of Nava's flat plate test. As the hole depth is decreased, the friction factor is increased, and maximum friction factor is obtained for 50% of hole area. Since the present experimental friction factor results show coincident characteristics with Moody's friction factor model, empirical friction factors for round-hole pattern surfaces are obtained by using the Moody's formula based on curve-fit of the experimental data. Results of Villasmil's 2D CFD simulation support the present experimental test result.

A Study on the Characteristic of Dye-sensitized Solar Cell by Controlling the Roughness Factor of Counter Electrode (염료감응형 태양전지의 상대전극 Roughness Factor 조절을 통한 셀 특성 연구)

  • Son, Min-Kyu;Seo, Hyun-Woong;Lee, Kyoung-Jun;Kim, Jeong-Hoon;Kim, Hee-Je
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.428-430
    • /
    • 2008
  • Dye-sensitized solar cell has many internal resistant components such as Pt counter electrode, $TiO_2$/dye/electrolyte, charge diffusion, sheet resistance of TCO. Among these, the resistance about the counter electrode can be reduced by increasing the roughness factor of Pt counter electrode. This causes the increase of fill factor and improvement of efficiency. And the amount of light reflection on the counter electrode also increases as the roughness factor goes up. In our experiment, we suggest a new deposition structure of Pt thin film that is a stepped-type structure. The more step lines are in the counter electrode, the more roughness factor is. As a result, we get the improvement of fill factor and efficiency by controlling the roughness factor of counter electrode.

  • PDF

The Effect of Surface-Friction-Factor-Jump Characteristics on Retordynamics of a Seal (마찰계수 급상승 특성이 실의 로터다이나믹 특성에 미치는 영향)

  • 하태웅
    • Journal of KSNVE
    • /
    • v.6 no.2
    • /
    • pp.197-203
    • /
    • 1996
  • This study is to analyze the rotordynamic effect of surface-friction- factor characteristics on an annular seal. The honeycomb geometry which shows friction-factor-jump phenomena is used in this study. A rotordynamic analysis for a contered annular seal has been developed by incorporating empirical friction-factor model for honeycomb stator surfaces. The results of the analysis for the honeycomb seal showing the friction-factor jump is compared to the non- friction-factor-jump case. The results yield that the friction-factor-jump decreasesdirect stiffness and cross coupled stiffness coefficients, and increases damping coefficient to stabilize rotating machinery in a rotordynamic point of view. The analysis of the honeyeomb seal for the friction-factor-jump case shows reasonably good compared to experimental results, especially, for cross coupled and damping coeffcients.

  • PDF

Study on the Response Modification Factor for a Lightweight Steel Panel-Modular Structure Designed as a Dual Frame System (이중골조시스템으로 설계된 복강판-모듈러 구조물의 반응수정계수에 관한 연구)

  • Lee, Eo-Jin;Hong, Sung-Gul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.39-48
    • /
    • 2011
  • In this present study, a response modification factor for a lightweight steel panel-modular system which is not clarified in a current building code was proposed. As a component of the response modification factor, an over-strength factor and a ductility factor were drawn from the nonlinear static analysis curves of the systems modeled on the basis of the performance tests. The final response modification factor was then computed by modifying the previous response modification factor with a MDOF (Multi-Degree-Of-Freedom) base shear modification factor considering the MDOF dynamic behaviors. As a result of computation for the structures designed as a dual frame system, ranging from 2-story to 5-story, the value of 4 was estimated as a final response modification factor for a seismic design, considering the value of 5 as an upper limit of the number of stories.

Coupling loss factor evaluation using loss factor based on the SEA (SEA에 기초를 둔 손실계수를 이용한 결합계수의 평가)

  • 안병하;황선웅;김영종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.568-571
    • /
    • 1997
  • The overall aim of this paper is to determine coupling loss factor using loss factor and structural loss factor. For this purpose, two kinds of loss factor were adopted. One is loss factor of each sub structure, another is structural loss factor based on the complex welded or assembled structure. Using these two parameters, it is possible to derive the coupling loss factor which represent characteristic condition of SEA theory. Coupling loss factor of conjunction in complex structure was expressed as power balance equation. The derived equation for a coupling loss factor has been simplified on the assumption of one directional power flow between two sub structures. Using these conditions, it is possible to find the coupling loss factor equation. The comparison between theory of power transmission on conjunction and above equation, show a good agreement in simple beam structure. To check the effectiveness of above equation, it was adopted rotary compressor. Rotary compressor has three main conjunctions between shell and internal vibration part. This equation was applied to find out the optimum welding point with respect to reduce the noise propagation. It shows the effective tool to evaluate the coupling loss factor in complex structure.

  • PDF

The Importance Analysis on SME's ERP System Introduction Factors (중소기업의 ERP 시스템 도입요인에 대한 중요도 분석)

  • Oh, Sang-Kweon;Yi, Seon-Gyu
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.4
    • /
    • pp.490-499
    • /
    • 2015
  • In this study, for the introduction factors of ERP system suggested in the prior study, I analyzed the importance of each introduction factor by using Delphi methodology and AHP. As a result of analysing the importance of the introduction factors of the 1st layer, the supplier factor was analyzed to be the most important factor among innovation factor, information technology factor, the user factor, the supplier factor, and in the weight analysis on the 2nd layer considering the importance of 1st layer, the standard work model of the supplier factor was a suitable factor, and the CEO participation factor(.086) was analyzed as the second most important introduction factor. These analysis results enable to determine that domestic Small & Medium enterprises' position hope to introduce by selecting a system in which the company characteristics and management strategies are applied well, because they should operate an ERP system that has already been developed, and in this course, the participation of CEO was also found to be a very important factor.

Factor Analysis for Exploratory Research in the Distribution Science Field (유통과학분야에서 탐색적 연구를 위한 요인분석)

  • Yim, Myung-Seong
    • Journal of Distribution Science
    • /
    • v.13 no.9
    • /
    • pp.103-112
    • /
    • 2015
  • Purpose - This paper aims to provide a step-by-step approach to factor analytic procedures, such as principal component analysis (PCA) and exploratory factor analysis (EFA), and to offer a guideline for factor analysis. Authors have argued that the results of PCA and EFA are substantially similar. Additionally, they assert that PCA is a more appropriate technique for factor analysis because PCA produces easily interpreted results that are likely to be the basis of better decisions. For these reasons, many researchers have used PCA as a technique instead of EFA. However, these techniques are clearly different. PCA should be used for data reduction. On the other hand, EFA has been tailored to identify any underlying factor structure, a set of measured variables that cause the manifest variables to covary. Thus, it is needed for a guideline and for procedures to use in factor analysis. To date, however, these two techniques have been indiscriminately misused. Research design, data, and methodology - This research conducted a literature review. For this, we summarized the meaningful and consistent arguments and drew up guidelines and suggested procedures for rigorous EFA. Results - PCA can be used instead of common factor analysis when all measured variables have high communality. However, common factor analysis is recommended for EFA. First, researchers should evaluate the sample size and check for sampling adequacy before conducting factor analysis. If these conditions are not satisfied, then the next steps cannot be followed. Sample size must be at least 100 with communality above 0.5 and a minimum subject to item ratio of at least 5:1, with a minimum of five items in EFA. Next, Bartlett's sphericity test and the Kaiser-Mayer-Olkin (KMO) measure should be assessed for sampling adequacy. The chi-square value for Bartlett's test should be significant. In addition, a KMO of more than 0.8 is recommended. The next step is to conduct a factor analysis. The analysis is composed of three stages. The first stage determines a rotation technique. Generally, ML or PAF will suggest to researchers the best results. Selection of one of the two techniques heavily hinges on data normality. ML requires normally distributed data; on the other hand, PAF does not. The second step is associated with determining the number of factors to retain in the EFA. The best way to determine the number of factors to retain is to apply three methods including eigenvalues greater than 1.0, the scree plot test, and the variance extracted. The last step is to select one of two rotation methods: orthogonal or oblique. If the research suggests some variables that are correlated to each other, then the oblique method should be selected for factor rotation because the method assumes all factors are correlated in the research. If not, the orthogonal method is possible for factor rotation. Conclusions - Recommendations are offered for the best factor analytic practice for empirical research.

Development of A Nurse는s Suffering Experience Scale (말기 암 환자를 간호하는 간호사의 고통경험 척도개발)

  • 조계화
    • Journal of Korean Academy of Nursing
    • /
    • v.32 no.2
    • /
    • pp.243-253
    • /
    • 2002
  • The purpose of this study was to develop Nurse's Suffering Experience Scale and to test the reliability and validity of the instrument. Method: The subjects used to verify the scale's reliability and validity were 220 nurses who were taking care of the end stage cancer patients, while working at university and general hospitals in Daegu and Kyungbuk province from April 20. to July 10, 2001. The data was analyzed by the SPSS/WIN 8.0 program. Results: A factor analysis was conducted, and items that had a factor loading more than .40, and an eigen value more than 1.0. were selected. The factor analysis classified a total of seven factors statistically, and it's communality was 44%. The explanation of factors based on the conceptual framework and item content are as follows: The first factor was expanding self consciousness, the second factor was forming empathy with family, the third factor was professional challenge, the fourth factor was change of values, the fifth factor was spiritual sublimation, the sixth factor was helplessness, and finally the seventh factor was rejection to death. Cronbach's coefficient to test reliability of the scale was .8665 for total of 44 items. The Scale for Nurse's Suffering Experience developed in the study was identified as a tool with a high degree of reliability and validity. Therefore this scale can be effectively utilized for the evaluation of the degree of nurse's suffering experience in clinical settings.

A Study on R&D Critical Factors Affecting R&D Performance in Aviation and Aerospace Industries (항공·우주분야 연구개발사업(R&D) 성과영향요인이 R&D 성과에 미치는 영향에 관한 연구)

  • So, Eun Jung;Kim, Ki-Woong;Kim, Kwang-Il
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.2
    • /
    • pp.26-36
    • /
    • 2019
  • Although the investment size of R&D in Aviation and Aerospace Industries is increasing, R&D performance has not been quite good considering resources invested in it. This study is to find which R&D critical factors affect R&D Performance in aviation and aerospace industries. According to the result of research, a technology provider factor, an organization factor, a system factor and a market environment factor influence positively on financial performance, and a policy factor influences negatively on financial performance. Otherwise, a technology provider factor and an organization factor influence positively on non financial performance, and technology factor influences negatively on non financial performance. Thus, personnel involved in R&D of Aviation and Aerospace Industries should develop policy and system taking positive and negative factors to improve R&D performance. It could lead to take the better performance from R&D in Aviation and Aerospace Industires.