• Title/Summary/Keyword: A-P shear force

Search Result 591, Processing Time 0.03 seconds

A Study on the Field Application of High Strength Joint Buried Pile Retaining Wall Method (고강도 결합 매입말뚝 흙막이 공법의 현장적용성 검토에 관한 연구)

  • Lee, Gwangnam;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.671-684
    • /
    • 2022
  • This study verified the stability of a high-strength combined buried pile retaining wall and its applicability in the field. A cast-in-place (C.I.P) retaining wall and the high-strength combined embedded pile retaining wall were compared and analyzed numerically. The numerical analysis assessed the ground behavior and stability (and thus field applicability) of a high-strength combined buried pile retaining wall using data measured in the field. The experimental results showed that the cross-sectional force and displacement of the high-strength bonded pile retaining wall were reduced by 13.6~19.7%, the shear force increased by 0.7~4.7%, and the bending moment increased by 4.5~8.8% relative to the values for the C.I.P retaining wall. Examination of the amount of subsidence in the ground around the excavation showed that the maximum settlement of the C.I.P retaining wall was 46.89 mm and that at the high-strength combined buried pile retaining wall was 39.37 mm. Overall, designing a high-strength combined embedded pile retaining wall by applying the maximum bending moment and shear force calculated using the elastic beam method to the site ground was shown to achieve the safety of all members, as member forces were generated within the elastic region.

Effects of Time-Dependent High Pressure Treatment on Physico-chemical Properties of Pork

  • Hong, Geun-Pyo;Park, Sung-Hee;Kim, Jee-Yeon;Lee, Si-Kyung;Min, Sang-Gi
    • Food Science and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.808-812
    • /
    • 2005
  • The effects of high pressure processing, pressure level (50, 100, 150, and 200 MPa) and pressurized time (0, 5, 10, 15, 30, 45, and 60 min) on the physico-chemical properties of pork M. longissimus dorsi were evaluated. The pH value was affected by both pressure level and pressurized time, especially at 200 MPa (P<0.05). In color measurement, $L^*$ and $a^*$-values were increased by both pressure level and pressurized time, but $b^*$-value did not differ significantly (P>0.05). Water holding capacity (WHC) was significantly decreased (P<0.05) depending on pressure level and pressurized time, while cooking loss was gradually increased. Warner-Bratzler shear force did not differ significantly (P>0.05) among the treatments. These results indicate that high pressure processing below 200 MPa for 1 hr had no effect on the quality of cooked meat, although some alterations were observed before cooking.

New nine-node Lagrangian quadrilateral plate element based on Mindlin-Reissner theory using IFM

  • Dhananjaya, H.R.;Pandey, P.C.;Nagabhushanam, J.;Ibrahim, Zainah
    • Structural Engineering and Mechanics
    • /
    • v.41 no.2
    • /
    • pp.205-229
    • /
    • 2012
  • This paper presents a new nine-node Lagrangian quadrilateral plate bending element (MQP9) using the Integrated Force Method (IFM) for the analysis of thin and moderately thick plate bending problems. Three degrees of freedom: transverse displacement w and two rotations ${\theta}_x$ and ${\theta}_y$ are considered at each node of the element. The Mindlin-Reissner theory has been employed in the formulation which accounts the effect of shear deformation. Many standard plate bending benchmark problems have been analyzed using the new element MQP9 for various grid sizes via Integrated Force Method to estimate defections and bending moments. These results of the new element MQP9 are compared with those of similar displacement-based plate bending elements available in the literature. The results are also compared with exact solutions. It is observed that the presented new element MQP9 is free from shear locking and produced, in general, excellent results in all plate bending benchmark problems considered.

Effects of Hydrostatic Pressure Treatment on the Physicochemical, Morphological, and Textural Properties of Bovine Semitendinosus Muscle

  • Kim, Yun-Ji;Lee, Eun-Jung;Lee, Nam-Hyouck;Kim, Young-Ho;Yamamoto, Katsuhiro
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.49-54
    • /
    • 2007
  • The effects of hydrostatic pressure (HP) treatment on the physicochemical, morphological, and textural properties of bovine semitendinosus (ST) muscle were assessed. Based on SDS-PAGE, the decrease in HP-treated ST muscle protein solubility in 0.1 M KCl buffer (pH 7.0) was attributable to a reduction in the levels of sarcoplasmic protein, and the protein solubility decrease observed in 0.6 M KCl buffer (PH 7.0) was attributable to a reduction in the levels of myosin heavy-chain and actin. Scanning electron microscope (SEM) observations showed that muscle fibers became finer and more compact with increasing pressures. The shear force and hardness of ST muscle pressurized to 300 MPa decreased significantly (p<0.05), however samples pressurized at 100 and 500 MPa exhibited a significant increase in both attributes relative to the control sample (p<0.05).

Effect of Electrical Stimulation on Physico-Chemical Properties of Korean Native Cattle Meat (전기자극이 저장중 한우육의 이화학적 변화에 미치는 영향)

  • Shin, Heuyn-Kil;Oh, Eun-Kyong;Park, Jong-Heum;Kim, Cheon-Jei;Huh, Jeong-Weon
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.252-257
    • /
    • 1993
  • Nine Korean native cattle were purchased from a beef cattle farm. Immediatly after slaughtering and skinning, each carcass was split into left and right sides and the one half was kept as a control, the other one was electrically stimulated by using 400v stimulator for 1 min. All samples were analyzed for shear force value, ATP and biochemical changes to investigate the effect of electrical stimulation during storage at $5^{\circ}C\;and\;15^{\circ}C$. The amount of lactate of electrically stimulated (E.S.) meat showed a rapid increment compared with that of control (p<0.01). E.S. treatment caused a rapid drop of pH value. Initial pH decreased from 6.85 to 6.38 in M. semitendinosus and from 7.0 to 6.58 in Triceps brachii by E.S. treatment (p<0.01). Electrically stimulated muscle showed decrease (34.67%) in ATP to $5.74{\mu}mole/g$ from $8.78{\mu}mole/g$ of unstimulated meat. ATP of the electrically stimulated muscle stored at $15^{\circ}C$ and $5^{\circ}C$ was degraded faster than that of control until 6 hours post-mortem (p<0.05). The tenderness of meat after aging was improved significantly by electrical stimulation with lower shear force value than that of untreated meat (p<0.01).

  • PDF

Application of Proteolytic Enzymes in Fruits for Meat Tenderization (과일에 존재하는 단백질 분해효소의 식육연화효과에 관한 연구)

  • 배영희;노정해
    • Korean journal of food and cookery science
    • /
    • v.16 no.4
    • /
    • pp.367-371
    • /
    • 2000
  • In order to study the tenderizing effect of proteolytic enzymes in fruits, beef(M. semimembranosus) was marinated with meat sauce containing each fruit juices. After cooking, the shear force was measured by Rheometer and evaluated the sensory properties of beef by quantitative descriptive analysis method. The results are as follows: 1. The combination ratio of meat sauce:water was 2:1 with pH 5.0∼5.5 showed the max. tenderness. 2. As a result of shear force test, the decrease of shear force was pineapple>papaya>fig>kiwifruit>pear: especially, pineapple, papaya and fig tendered the beef significantly comparing with pear and kiwifruit at p<0.001. 3. The tendering effect of pineapple and papaya on the meat showed significant difference (p<0.01) comparing with pear in tenderness and overall acceptability by sensory evaluation; and there was a significant difference between pear and papaya in taste (p<0.05). 4. There was highly significant correlation between mechanical tenderness and sensory properties: correlation of fruit and mechanical tenderness was -.877(p<0.01); between mechanical tenderness and overall acceptability, r = .532(p<0.01); between fruit and sensory tenderness, r = .495(p<0.01); between mechanical tenderness and sensory tenderness, r = .490(p<0.01). At p<0.05, between taste and juiciness, r = .208.

  • PDF

Effect of a Prolonged-run-induced Fatigue on the Ground Reaction Force Components (오래 달리기로 인한 피로가 지면반력 성분에 미치는 영향)

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.3
    • /
    • pp.225-233
    • /
    • 2013
  • The purpose of this study was to estimate the potential injury via analyzing ground reaction force components that were resulted from a prolonged-run-induced fatigue. For the present study, passive and active components of the vertical ground reaction force were determined from time and frequency domain. Shear components of GRF also were calculated from time and frequency domain. Twenty subjects with rear foot contact aged 20 to 30, no experience in injuries of the extremities, were requested to run on the instrumented tread-mill for 160 minutes at their preference running speed. GRF signals for 10 strides were collected at 5, 35, 65, 95, 125, and 155 minute during running. In conclusions, there were no significant difference in the magnitude of passive force, impact load rate, frequency of the passive and active components in vertical GRF between running times except the magnitude of active force (p<.05). The magnitude of active force was significantly decreased after 125 minute run. The magnitude of maximum peak and maximum frequency of the mediolateral GRF at heel strike and toe-off have not been changed with increasing running time. The time up to the maximum peak of the anteroposterior at heel-strike moment tend to decrease (p<.05), but the maximum peak and frequency of that at heel and toe-off moment didn't depend significantly on running time.

Shear bond strength of luting cements to fixed superstructure metal surfaces under various seating forces

  • Ozer, Fusun;Pak-Tunc, Elif;Dagli, Nesrin Esen;Ramachandran, Deepika;Sen, Deniz;Blatz, Markus Bernhard
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.5
    • /
    • pp.340-346
    • /
    • 2018
  • PURPOSE. In this study, the shear bond strengths (SBS) of luting cements to fixed superstructure metal surfaces under various seating forces were investigated. MATERIALS AND METHODS. Seven different cements [Polycarboxylate (PCC), Glass-Ionomer (GIC), Zinc phospahate (ZPC), Self-adhesive resin (RXU), Resin (C&B), and Temporary cements ((RXT) and (TCS))] were bonded to a total number of 224 square blocks ($5{\times}5{\times}3mm$) made of one pure metal [Titanium (CP Ti) and two metal alloys [Gold-Platinum (Au-Pt) and Cobalt-Chrome (Co-Cr)] under 10 N and 50 N seating forces. SBS values were determined and data were analyzed with 3-way ANOVA. Pairwise comparisons and interactions among groups were analyzed with Tukey's simultaneous confidence intervals. RESULTS. Overall mean scores indicated that Co-Cr showed the highest SBS values ($1.96{\pm}0.4$) (P<.00), while Au-Pt showed the lowest among all metals tested ($1.57{\pm}0.4$) (P<.00). Except for PCC/CP Ti, RXU/CP Ti, and GIC/Au-Pt factor level combinations (P<.00), the cements tested under 10 N seating force showed no significantly higher SBS values when compared to the values of those tested under 50 N seating force (P>.05). The PCC cement showed the highest mean SBS score ($3.59{\pm}0.07$) among all cements tested (P<.00), while the resin-based temporary luting cement RXT showed the lowest ($0.39{\pm}0.07$) (P<.00). CONCLUSION. Polycarboxylate cement provides reliable bonding performance to metal surfaces. Resin-based temporary luting cements can be used when retrievability is needed. GIC is not suitable for permanent cementation of fixed dental prostheses consisting of CP Ti or Au-Pt substructures.

Fatigue Strength of Al-5052 Tensile-Shear Specimens using a SPR Joining Method (SPR 접합법을 이용한 Al-5052 인장-전단 시험편의 피로강도)

  • Lee, Man Suk;Kim, Taek Young;Kang, Se Hyung;Kim, Ho Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.9-14
    • /
    • 2014
  • Self-piercing riveting(SPR) is a mechanical fastening technique which is put pressure on the rivet for joining the sheets. Unlike a spot welding, SPR joining does not make the harmful gas and $CO_2$ and needs less energy consumption. In this study, static and fatigue tests were conducted using tensile-shear specimens with Al-5052 plates for evaluation of fatigue strength of the SPR joints. During SPR joining process for the specimen, using the current sheet thickness and a rivet, the optimal applied punching force was found to be 21 kN. And, the maximum static strength of the specimen produced at the optimal punching force was 3430 N. During the fatigue tests for the specimens, interface failure mode occurred on the top substrate close to the rivet head in the most high-loading range region, but on the bottom substrate close to the rivet tail in the low -loading range region. There was a relationship between applied load amplitude $P_{amp}$ and lifetime of cycle N for the tensile-shear, $P_{amp}=3395.5{\times}N^{-0.078}$. Using the stress-strain curve of the Al-5052 from tensile test, the simulations for fatigue specimens have been carried out using the implicit finite element code ABAQUS. The relation between von-Mises equivalent stress amplitude and number of cycles was found to be ${\sigma}_{eq}=514.7{\times}N^{-0.033}$.

Analysis of Slope Stability Effect of Arbors' Roots - On Tensile Strength of the Roots - (교목류 뿌리의 비탈면 안정효과 분석 - 뿌리의 인장강도를 중심으로 -)

  • Oh, Jae-Heun;Hwang, Jin-Sung;Cha, Du-Song
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.1
    • /
    • pp.31-36
    • /
    • 2011
  • To provide the basic information about slope stability analysis, tensile force and strength of tree roots like Pinus koraiensis, Larix leptolepis, Pinus densiflora, Quercus mongolica, and Alnus japonica were measured and analyzed. As a result, tensile force increases in forms of involution of root diameter. The mean tensile strength of roots like P. koraiensis, L. leptolepis, P. densiflora, A. japonica and Q. mongolica were calculated as $165.38kgf/cm^2$, $172.78kgf/cm^2$, $176.25kgf/cm^2$, $214.29kgf/cm^2$ and $224.19kgf/cm^2$ respectively. It was shown that tensile strength decreasing tendency as root diameter increases. Also, recalculated soil shear strength by tensile strength of the roots like P. koraiensis, L. leptolepis, P. densiflora, A. japonica and Q. mongolica were $0.099kgf/cm^2$, $0.104kgf/cm^2$, $0.106kgf/cm^2$, $0.129kgf/cm^2$ and $0.135kgf/cm^2$ respectively.