• Title/Summary/Keyword: A flow velocity

Search Result 6,221, Processing Time 0.042 seconds

Improvement of the Model for Predicting Swing Check Valve Opening (스윙형 역지 밸브 개도 예측 모델 개선)

  • Kim, Yang-seok;Song, Seok-yoon;Kim, Dae-woong;Park, Sung-keun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.315-320
    • /
    • 2004
  • Swing check valves are the most common type of check valve in nuclear power plant and need to be operated property to perform their functions and to keep the valve internals stable. However, for a swing check valve disc to remain stable, the opening characteristics should be identified and the upstream flow velocity should be enough to hold the disc fully open and without motion. Thus it is necessary to develop a model for predicting the flow velocity for a given disc opening. In the present study, the disc positions with mean flow velocity were measured for 3 inch and 6 inch swing check valves. Comparison of the measurements with the existing models showed that the models underestimate the mean flow velocity for a given disc position. Therefore, the existing model for predicting swing check valve disc position was improved with the realistic disc impingement area perpendicular to the flow stream and the experimental data. The result showed that the improved model with the best estimate of kb = 0.04 predicts well the disc openings of 6 inch swing check valve, especially in the low velocity region. For better prediction of the disc opening at high flow velocity, however, it is recommended to develop a kb correlation with the disc angle.

  • PDF

Extraction of Flow Velocity Information using Direct Wave and Application of Waveform Inversion Considering Flow Velocity (직접파를 이용한 배경매질 유속정보 도출과 유속을 고려한 파형역산의 적용)

  • Lee, Dawoon;Chung, Wookeen;Shin, Sungryul;Bae, Ho Seuk
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.4
    • /
    • pp.199-206
    • /
    • 2017
  • Field data obtained from marine exploration are influenced by various environmental factors such as wind, waves, tidal current and flow velocity of a background medium. Most environmental factors except for the flow velocity are properly corrected in the data processing stage. In this study, the wave equation modeling considering flow velocity is used to generate observation data, and numerical experiments using the observation data were conducted to analyze the effect of flow velocity on waveform inversion. The numerical examples include the results with unrealistic flow velocities. In addition, an algorithm is suggested to numerically extract flow velocity for waveform inversion. The proposed algorithm was applied to the modified Marmousi2 model to obtain the results depending on the flow velocity. The effect of flow velocity on updated physical properties was verified by comparing the inversion results without considering flow velocity and those obtained from the proposed algorithm.

Peripheral Blood Flow Velocity and Peripheral Pulse Wave Velocity Measured Using a Clip-type Pulsimeter Equipped with a Permanent Magnet and a Hall Device

  • Kim, Keun-Ho;Lee, Sang-Suk
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.47-51
    • /
    • 2015
  • We measured radial arterial pulse signals using a prototype of a clip-type pulsimeter equipped with a permanent magnet and a Hall device, which produced signals through a voltage-detecting circuit. The systolic peak time and the reflective peak time for a temporally pulsed signal were analyzed for an arbitrary pulse wave at one position of a small permanent magnet. The measured value of the peripheral pulse wave velocity was about 1.25-1.52 m/s, demonstrating the accuracy of this new method. To measure the peripheral blood flow velocity, we simultaneously connected the radial artery pulsimeter to a photoplethysmography meter. The average value of the peripheral blood flow velocity was about 0.27-0.50 m/s.

On the Optimum Modelization for a Spray Column Direct Contact Heat Exchanger (분사칼럼식 직접접촉 열교환기의 최적 모델링을 위한 연구)

  • Yoon, S.M.;Kang, Y.H.;Kim, C.B.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-10
    • /
    • 1991
  • The purpose of this study is to lay groundwork for a complete analysis of two component flow by analyzing a single component flow made of continuous fluid without dispersed phase. In order to achieve uniform velocity distributions which are desirable in designing an optimum spray column direct contact heat exchanger, the influence of injection nozzle orientation has been investigated for axial and radial injections. The results that radial injection ensures more uniform velocity distributions compared to the axial case. The flow characteristics in a spray column have been investigated with various L/D values and inlet velocities, the most uniform internal velocity distributions have been obtained for the case of L/D=10 and 0.1m/sec. In the present investigation, it is shown that radial injection method for the continuous flow is advantageous in obtaining desirable uniform velocity distributions in a spray column. It is also found that as the value of L/D increases and the inlet velocity decreases, the flow improves to be better uniform velocity distributions.

  • PDF

Fluidelastic instability of a curved tube array in single phase cross flow

  • Kang-Hee Lee;Heung-Seok Kang;Du-Ho Hong;Jong-In Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1118-1124
    • /
    • 2023
  • Experimental study on the fluidelastic instability (FEI) of a curved tube bundle in single phase downward cross flow is investigated for the design qualification and analysis input preparation of helical coiled steam generator tubing. A 6×9 normal square curved tube array with equal and different vertical/horizontal pitch-to-diameter ratio was under-tested up to 6 m/s in term of gap flow velocity to measure the critical velocity for FEI. The critical velocity for FEI was measured at the turning point from the vibration amplitude plot along the gap flow velocity. Our test results were compared with straight tube results and published data in the design guideline. The applicability of the current design guidelines to a curved tube bundle is also assessed. We found that introducing frequency difference in a curved tube array increases the critical velocity for fluidelastic instability.

Unsteady Nature of a Tip Leakage Vortex in an Axial Flow Fan (축류팬 익단누설와류의 비정상 특성)

  • Jang, Choon-Man;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.845-850
    • /
    • 2003
  • Unsteady nature of a tip leakage vortex in an axial flow fan operating at a design and off-design operating conditions has been investigated by measuring the velocity fluctuation in a blade passage with a rotating hotwire probe sensor. Two hot-wire probe sensors rotating with the fan rotor were also introduced to obtain the cross-correlation coefficient between the two sensors located in the vortical flow as well as the fluctuating velocity. The results show that the vortical flow structure near the rotor tip can be clearly observed at the quasi-orthogonal planes to a tip leakage vortex. The leakage vortex is enlarged as the flow rate is decreased, thus resulting in the high blockage to main flow. The spectral peaks due to the fluctuating velocity near the rotor tip are mainly observed in the reverse flow region at higher flow rates than the peak pressure operating condition. However, no peak frequency presents near the rotor tip for near stall condition.

  • PDF

Measurement of suction air amount at reciprocating engine under stationary and transient operation

  • Kubota, Yuzuru;Hayashi, Shigenobu;Kajitani, Shuichi;Sawa, Norihiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1037-1042
    • /
    • 1990
  • The air-fuel ratio of an internal combustion engine must be controlled with accuracy for the improvements of exhaust emission and fuel consumption. Therefore, it is necessary to measure the exact instantaneous amounts of fuel and suction air, so we carried out the experiments for measuring the air flow velocity in a suction pipe of an internal combustion engine using three types of instantaneous air flowmeter. The results obtained can be summarized as follows: (1) The laminar-flow type flowmeter is able to measure both the average and the instantaneous flow rate, but it is necessary to rectify the pulsating air flow in the suction pipe. (2) The a spark-discharge type flow velocity meter is able to measure the instantaneous air velocity, but it is necessary to choose the suitable electrode form and the spark character. (3) The tandem-type hot-wire flow velocity meter indicates the instantaneous flow velocity and its flow direction.

  • PDF

A Study on the Characteristics of Air flow Fields with Velocity Uniformity in a Wind Tunnel (풍동장치 내 공기 유동장과 속도 균일도 특성에 대한 분석)

  • Han, Seok Jong;Lee, Sang Ho;Lee, Jae Gyu
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.3
    • /
    • pp.59-64
    • /
    • 2018
  • Numerical simulations were carried out to analyze the flow characteristics of the wind tunnel. Flow field characteristics with velocity uniformity at the test sections are largely affected by inlet conditions of air flow rate and temperature. Axial average velocity of the flow field inside the test area was almost linearly decreased by 0.026% each 1m. The uniformity distributions of axial velocity showed the highest reduction rate of about 24% between nozzle outlets 1 ~ 2m. In addition, average velocity and the uniformity are increased with air temperature in the wind tunnel due to density variation. The results of this paper are expected to be useful for the basic design of wind tunnel and to be used for efficient design.

Flow Velocity Change of David Glacier, East Antarctica, from 2016 to 2020 Observed by Sentinel-1A SAR Offset Tracking Method

  • Moon, Jihyun;Cho, Yuri;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • This study measures the change of ice flow velocity of David Glacier, one of the fast-moving glaciers in East Antarctica that drains through Drygalski Ice Tongue. In order to effectively observe the rapid flow velocity, we applied the offset tracking technique to Sentinel-1A SAR images obtained from 2016 to 2020 with 36-day temporal baseline. The resulting velocity maps were averaged and the two relatively fast points (A1 and A2) were selected for further time-series analysis. The flow velocity increased during the Antarctic summer (around December to March) over the four years' observation period probably due to the ice surface melting and reduced friction on the ice bottom. Bedmap2 showed that the fast flow velocities at A1 and A2 are associated with a sharp decrease in the ice surface and bottom elevation so that ice volumetric cross-section narrows down and the crevasses are being created on the ice surface. The local maxima in standard deviation of ice velocity, S1 and S2, showed random temporal fluctuation due to the rotational ice swirls causing error in offset tracking method. It is suggested that more robust offset tracking method is necessary to incorporate rotational motion.

Quantitative and qualitative analysis of the flow field development through T99 draft tube caused by optimized inlet velocity profiles

  • Galvan, Sergio;Reggio, Marcelo;Guibault, Francois;Solorio, Gildardo
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.4
    • /
    • pp.283-293
    • /
    • 2015
  • The effect of the inlet swirling flow in a hydraulic turbine draft tube is a very complex phenomenon, which has been extensively investigated both theoretically and experimentally. In fact, the finding of the optimal flow distribution at the draft tube inlet in order to get the best performance has remained a challenge. Thus, attempting to answer this question, it was assumed that through an automatic optimization process a Genetic Algorithm would be able to manage a parameterized inlet velocity profile in order to achieve the best flow field for a particular draft tube. As a result of the optimization process, it was possible to obtain different draft-tube flow structures generated by the automatic manipulation of parameterized inlet velocity profiles. Thus, this work develops a qualitative and quantitative analysis of these new draft tube flow field structures provoked by the redesigned inlet velocity profiles. The comparisons among the different flow fields obtained clearly illustrate the importance of the flow uniformity at the end of the conduit. Another important aspect has been the elimination of the re-circulating flow area which used to promote an adverse pressure gradient in the cone, deteriorating the pressure recovery effect. Thanks to the evolutionary optimization strategy, it has been possible to demonstrate that the optimized inlet velocity profile can suppress or mitigate, at least numerically, the undesirable draft tube flow characteristics. Finally, since there is only a single swirl number for which the objective function has been minimized, the energy loss factor might be slightly affected by the flow rate if the same relation of the axial-tangential velocity components is maintained, which makes it possible to scale the inlet velocity field to different operating points.