• 제목/요약/키워드: A flow constant

검색결과 1,882건 처리시간 0.031초

Power Flow Control at the Subnetwork-Level in Microgrids

  • Liu, Kun;Khan, Muhammad Mansoor;Rana, Ahmad;Fei, Dong
    • Journal of Power Electronics
    • /
    • 제18권2호
    • /
    • pp.588-603
    • /
    • 2018
  • This paper presents the idea of a smart load that can adjust the input power flow based on the intermittent power available from RESs (Renewable Energy Resources) to regulate the line voltage, and draw a constant power from the grid. To this effect, an innovative power flow controller is presented based on a Resistive ES (Electric Spring) in combination with a PEAT (Power Electronics based Adjustable Transformer), which can effectively shape the load power flow at the subnetwork level. With a PEAT incorporated in the step down transformer at the grid side, the proposed controller can supply non-critical loads through local RESs, and the critical loads can draw a relatively constant power from the grid. If there is an abundance of power produced by the RESs, the controller can supply both non-critical loads and critical loads through the RES, which significantly reduces the power demand from the grid. The principle, practicality, stability analysis, and controller design are presented. In addition, simulation results show that the power flow controller performs well in shaping the load power flow at the subnetwork level, which decreases the power demand on the grid. Experimental results are also provided to show that the controller can be realized.

정온도형 유속 및 유량 측정센서 (Flow Velocity and Mass Measurement Sensor of Constant Temperature Type)

  • 박세광;김형표
    • 센서학회지
    • /
    • 제1권1호
    • /
    • pp.35-41
    • /
    • 1992
  • 기체와 액체의 유숙을 측정하기 위한 반도체 기술을 이용한 소형의 정온도형 유속센서가 제작되었다. 유속센서는 유속에 영향을 받는 대류 열전달만을 검출하도록 설계되었고, 다른 종류의 열전달과 간섭효과는 기준센서의 사용으로 상쇄되도록 하였다. 원리는 유동에 의한 센서 양단전류의 변화로 유속을 측정하는 것이다. 이 유속센서의 실험은 수돗물로 가는 관(지름 8mm)을 사용하여 수행되었다. 그 결과 센서의 소비전력과 유속의 제곱근 사이의 관계는 유속이 0-200cm/sec 범위에서 거의 선형으로 나타났다.

  • PDF

가변 용적형 사판식 피스톤 펌프의 회전 속도 조절에 의한 정압 제어 소비 동력 절감 (Reduction of Power Consumption for Constant Pressure Control of Variable Swash Plate-type Piston Pump by Varying the Pump Speed)

  • 김종혁;홍예선
    • 드라이브 ㆍ 컨트롤
    • /
    • 제11권4호
    • /
    • pp.53-60
    • /
    • 2014
  • This paper proposes a control scheme to reduce the power consumption of a variable displacement swash-plate type piston pump supplying oil to a valve-controlled hydraulic cylinder at constant pressure. Whenever flow rate demand was absent, the swash plate angle and the pump speed were changed to the minimum values required to compensate for the internal leakage flow. In response to command signals, the pump speed was changed in proportion to the absolute mean value of the speed component for position commands. At the same time, a pressure regulator was activated to maintain constant system pressure by precisely adjusting the pump speed with the swash plate angle fixed at the maximum. The conventional system consisting of a pressure-compensated variable displacement type pump is driven at a constant speed of 1,800rpm. By comparison, computer simulation and experimental results showed that idling power at stand-by status could be reduced by up to 70% by reducing the pump speed from 1,800rpm to 300rpm and the swash plate angle to the minimum.

Behaviors of Anisotropic Fluids in the Vicinity of a Wedge

  • Kim, Youn-J.
    • Journal of Mechanical Science and Technology
    • /
    • 제14권6호
    • /
    • pp.690-698
    • /
    • 2000
  • The laminar boundary layer flow and heat transfer of anisotropic fluids in the vicinity of a wedge have been examined with constant surface temperature. The similarity variables found by Falkner and Skan are employed to reduce the stream wise-dependence in the coupled nonlinear boundary layer equations. The numerical solutions are presented using the fourth-order Runge - Kutta method and the distribution of velocity, micro-rotation, shear and couple stresses and temperature across the boundary layer are plotted. These results are also compared with the corresponding flow problems for Newtonian fluid over wedges. It is found that for a constant wedge angle, the skin friction coefficient is lower for micropolar fluid, as compared to Newtonian fluid. For the case of the constant material parameter K, however, the magnitude of velocity for anisotropic fluid is greater than that of Newtonian fluid. The numerical results also show that for a constant wedge angle with a given Prandtl number, Pr = I, the effect of increasing values of K results in increasing thermal boundary layer thickness for anisotropic fluid, as compared with Newtonian fluid. For the case of the constant material parameter K, however, the heat transfer rate for anisotropic fluid is lower than that of Newtonian fluid.

  • PDF

산업폐수처리를 위한 호기성 생물막 유동층 반응기의 연구(III) -유기물 제거에 관한 수학적 모델- (A Study on Aerobic Fluidized-Bed Biofilm Reactor for Treating Industrial Wastewaters(III) -Mathematical model for organic removal-)

  • 안갑환;박상준;송승구
    • 한국환경과학회지
    • /
    • 제2권4호
    • /
    • pp.331-336
    • /
    • 1993
  • A mathematical model for organic removal efficiency was investigated in a fluidized bed biofilm reactor by changing the feed flow rate, the residence time and the recycle flow rate. In batch experiment, organic removal could be assumed as first order and an intrinsic first order rate constant(k1) was found $6.4{\times}^{-6}cm^3/mg{\cdot}sec$ at influent COD range of 3040 - 6620 mg/L. In continuous experiment, at the condition of the influent COD, 3040 mg/L, the superficial upflow velocity, 0.47 cm/sec, the biofilm thickness 336 ${\mu}m$ and the biofilm dry density 0.091 g/mL, the calculated COD removal efficiency from the mathematical model gave 60% which was very close to the observed value of 66 %. As the feed flow rate was increased, the COD removal efficiency was sharply decreased and at constant feed flow rate, the COD removal efficiency was decreased also as the residence time being decreased.

  • PDF

박막펌핑을 이용한 Nano Fountain-Pen의 유동 특성에 관한 수치적 연구 (Numerical Analysis of the Flow Characteristics in the Nano Fountain-Pen Using Membrane Pumping)

  • 이진형;이영관;이석한;김훈모;김윤제
    • 한국유체기계학회 논문집
    • /
    • 제9권2호
    • /
    • pp.19-24
    • /
    • 2006
  • Nano fountain-pen is a novel device to make the constant patterning in micro process using new designed probe. Fountain-pen nanolithography (FPN) is applied for constant supply of liquid in conjunction of patterns and surface variation in the micro process. In this study, nuo fountain-pen is composed with reservoir, micro channels, tip and scondary chamber. Instead of traditional method only using capillary force, liquid can be definitely and exactly injected with membrane pumping by the repulse force of tip. It is dfficult to perform experiments in the micro range so that we carried out a numerical analysis for internal flow, using a commercial code, FlUENT, The velocity, pressure and flow rate are obtained under laminar, unsteady, three-dimensional incompressible flow with no-slip condition, and results are graphically described.

점탄성 유체의 부력에 의한 열전달 수치해석 (Numerical analysis on heat transfer due to buoyancy force of viscoelastic fluid)

  • 안성태;손창현;신세현
    • 한국전산유체공학회지
    • /
    • 제4권2호
    • /
    • pp.9-16
    • /
    • 1999
  • The present study investigates flow character and heat transfer behaviors of viscoelastic non-Newtonian fluid in a 2:1 rectangular duct. An axially-constant heat flux on bottom wall and peripherally constant temperature boundary condition(H1) was adopted. The Reiner-Rivlin fluid model is used as the normal stress model for the viscoelastic fluid and temperature-dependent viscosity model is adopted. The present results show a signifiant change of the main flow field which causes a large heat transfer enhancement. This phenomena can be explained by the combined effect of buoyancy, temperature-dependent viscosity and viscoelastic property on the flow.

  • PDF

고압스월분무 액막유동의 초기 발달과정에 대한 연구 (The Initial Film Flow Development of the High-Pressure Swirl Spray)

  • 문석수;;최재준;배충식
    • 한국분무공학회지
    • /
    • 제11권4호
    • /
    • pp.212-219
    • /
    • 2006
  • The initial film flow development of the high-pressure swirl spray was investigated at different injector operating conditions to analyze film flow development and to provide the input data for the modeling works. This result can be also useful to verify the previously simulated results. The initial flow conditions such as liquid film thickness, flow angle and flow divergence are obtained by visualizing the inside and near the nozzle flow with a microscopic imaging system. The visualized images are quantified using an image processing tool. From the information of liquid film thickness and flow angle, the initial axial and tangential velocity and the swirl number of the swirl spray are successfully determined at various operating conditions. The experimental results showed that the initial liquid film thickness, flow angle and flow divergence are remained constant when the injection pressure is increased. However, initial film conditions are severely changed when the fuel temperature is increased. The swirl number remained constant when the injection pressure is increased while it showed increased value at high fuel temperature condition.

  • PDF

수소생산용 원자로에서 동심축 이중관형 1차 고온가스덕트의 예비 구조정산 (Preliminary Structural Sizing of the Co-axial Double-tube Type Primary Hot Gas Duct for the Nuclear Hydrogen Reactor)

  • 송기남;김용완
    • 한국압력기기공학회 논문집
    • /
    • 제4권2호
    • /
    • pp.1-6
    • /
    • 2008
  • Very High Temperature Gas Cooled Reactor (VHTR) has been selected as a high energy heat source for nuclear hydrogen generation. The VHTR can produce hydrogen from heat and water by using a thermo-chemical process or from heat, water, and natural gas by steam reformer technology. A co-axial double-tube primary hot gas duct (HGD) is a key component connecting the reactor pressure vessel and the intermediate heat exchanger (IHX) for the VHTR. In this study, a preliminary design analysis for the primary HGD of the nuclear hydrogen system was carried out. These preliminary design activities include a determination of the size, a strength evaluation and an appropriate material selection. The determination of the size was undertaken based on various engineering concepts, such as a constant flow velocity model, a constant flow rate model, a constant hydraulic head model, and finally a heat balanced model.

  • PDF

유입 유동의 가속도가 2D 원형실린더의 항력 및 후류에 미치는 영향 (Effects of Flow Acceleration on Drag Force and Wake Field of 2D Circular Cylinder)

  • 손현아;이승수;조성락
    • 대한조선학회논문집
    • /
    • 제56권6호
    • /
    • pp.507-514
    • /
    • 2019
  • Computational studies of accelerating flow around 2D Circular Cylinder was performed to investigate characteristics of wake field and drag forces. Previous studies had revealed that drag on the cylindrical body in accelerating flow is much greater than that in the flow with constant velocity; however, the underlying physics on the drag increase has not been clearly investigated. In order to investigate the drag increase and its relationship with wake development, this study employed a finite-volume based CFD code, Fluent 13.0 with k-ω SST model for turbulence effects. Inflows are modeled with varied accelerations from 0.4905 to 9.81m/s2. The drag computed in the present study is in good agreement with previous studies, and clearly shows the increase compared to the drag on the body in the flow with constant velocity. The results also show that drag crisis observed at high Reynolds number in the case of the flow with constant velocity is also found in the case of accelerating flow. The analysis for wake and recirculation length shows that conventional vortex shedding does not occur even at high Reynolds number and the drag increase is larger at higher acceleration.