• 제목/요약/키워드: A Single System Design

검색결과 2,206건 처리시간 0.03초

스풀형 압력제어밸브의 동특성 해석 (An Analysis of the Dynamic Characteristics of a Spool Type Pressure Control Valve)

  • 문강현;허준영
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권4호
    • /
    • pp.61-66
    • /
    • 2018
  • Almost every hydraulic system is equipped with a pressure relief valve, to maintain working pressure of the system at a pre-determined level. Thus, dynamic characteristics of such a relief valve, in conjunction with other hydraulic components, are important in designing the hydraulic control system. The single stage pressure relief valve is dynamically undesirable, due to relatively low viscous damping, that causes high frequency oscillations. This problem is overcome by introducing orifices in the inner pilot line, and drain line. In this study, for the single stage spool type pressure relief valve, the system equations were derived through an adequate linearisation and several simplifications were made, to use the transfer function formulation technique. All coefficients were evaluated and used, to make some results by using Matlab software. Results of analysis are compared with experimental results. In this study, parameters affecting stability of valve design are determined and suggested relative to the design.

주요 성능변수를 근거한 단일채널펌프 설계기술 (Advanced Design Technique for a Single-Channel Pump Based on the Main Performance Parameters)

  • 김성;최영석;김진혁
    • 한국수소및신에너지학회논문집
    • /
    • 제30권5호
    • /
    • pp.448-454
    • /
    • 2019
  • This paper presents a high-efficiency design technique for developing the serialized models of a single-channel pump based on the diameter, flow rate and head as the main performance parameters. The variation in pump performance by changing of the single-channel pump geometry was predicted based on computational fluid dynamics (CFD). Numerical analysis was conducted by solving three-dimensional steady Reynolds-averaged Navier-Stokes equations with the shear stress transport (SST) turbulence model. The tendencies of the hydraulic performance depending on the pump geometry scale were analyzed with the fixed rotational speed. These performances were expressed and evaluated as the functionalization for designing the serialized models of a single-channel pump in this work.

A displacement-based seismic design method with damage control for RC buildings

  • Ayala, A. Gustavo;Castellanos, Hugo;Lopez, Saul
    • Earthquakes and Structures
    • /
    • 제3권3_4호
    • /
    • pp.413-434
    • /
    • 2012
  • This paper presents a displacement-based seismic design method with damage control, in which the targets for the considered performance level are set as displacements and a damage distribution is proposed by the designer. The method is based on concepts of basic structural dynamics and of a reference single degree of freedom system associated to the fundamental mode with a bilinear behaviour. Based on the characteristics of this behaviour curve and on the requirements of modal spectral analysis, the stiffness and strength of the structural elements of the structure satisfying the target design displacement are calculated. The formulation of this method is presented together with the formulations of two other existing methods currently considered of practical interest. To illustrate the application of the proposed method, 5 reinforced concrete plane frames: 8, 17 and 25 storey regular, and 8 and 12 storey irregular in elevation. All frames are designed for a seismic demand defined by single earthquake record in order to compare the performances and damage distributions used as design targets with the corresponding results of the nonlinear step by step analyses of the designed structures subjected to the same seismic demand. The performances and damage distributions calculated with these analyses show a good agreement with those postulated as targets.

RELIABILITY-BASED DESIGN OPTIMIZATION OF AN AUTOMOTIVE SUSPENSION SYSTEM FOR ENHANCING KINEMATIC AND COMPLIANCE CHARACTERISTICS

  • CHOI B.-L.;CHOI J.-H.;CHOI D.-H.
    • International Journal of Automotive Technology
    • /
    • 제6권3호
    • /
    • pp.235-242
    • /
    • 2005
  • This study introduces the Reliability-Based Design Optimization (RBDO) to enhance the kinematic and compliance (K & C) characteristics of automotive suspension system. In previous studies, the deterministic optimization has been performed to enhance the K & C characteristics. Unfortunately, uncertainties in the real world have not been considered in the deterministic optimization. In the design of suspension system, design variables with the uncertainties, such as the bushing stiffness, have a great influence on the variation of the suspension performances. There is a need to quantify these uncertainties and to apply the RBDO to obtain the design, satisfying the target reliability level. In this research, design variables including uncertainties are dealt as random variables and reliability of the suspension performances, which are related the K & C characteristics, are quantified and the RBDO is performed. The RBD-optimum is compared with the deterministic optimum to verify the enhancement in reliability. Thus, the reliability of the suspension performances is estimated and the RBD-optimum, satisfying the target reliability level, is determined.

Design of an Antireflection Coating for High-efficiency Superconducting Nanowire Single-photon Detectors

  • Choi, Jiman;Choi, Gahyun;Lee, Sun Kyung;Park, Kibog;Song, Woon;Lee, Dong-Hoon;Chong, Yonuk
    • Current Optics and Photonics
    • /
    • 제5권4호
    • /
    • pp.375-383
    • /
    • 2021
  • We present a simulation method to design antireflection coating (ARCs) for fiber-coupled superconducting nanowire single-photon detectors. Using a finite-element method, the absorptance of the nanowire is calculated for a defined unit-cell structure consisting of a fiber, ARC layer, nanowire absorber, distributed Bragg reflector (DBR) mirror, and air gap. We develop a method to evaluate the uncertainty in absorptance due to the uncontrollable parameter of air-gap distance. The validity of the simulation method is tested by comparison to an experimental realization for a case of single-layer ARC, which results in good agreement. We show finally a double-layer ARC design optimized for a system detection efficiency of higher than 95%, with a reduced uncertainty due to the air-gap distance.

Identification of Motion Platform Using the Signal Compression Method with Pre-Processor and Its Application to Siding Mode Control

  • Park, Min-Kyu;Lee, Min-Cheol
    • Journal of Mechanical Science and Technology
    • /
    • 제16권11호
    • /
    • pp.1379-1394
    • /
    • 2002
  • In case of a single input single output (SISO) system with a nonlinear term, a signal compression method is useful to identify a system because the equivalent impulse response of linear part from the system can be extracted by the method. However even though the signal compression method is useful to estimate uncertain parameters of the system, the method cannot be directly applied to a unique system with hysteresis characteristics because it cannot estimate all of the two different dynamic properties according to its motion direction. This paper proposes a signal compression method with a pre-processor to identify a unique system with two different dynamics according to its motion direction. The pre-processor plays a role of separating expansion and retraction properties from the system with hysteresis characteristics. For evaluating performance of the proposed approach, a simulation to estimate the assumed unknown parameters for an arbitrary known model is carried out. A motion platform with several single-rod cylinders is a representative unique system with two different dynamics, because each single-rod cylinder has expansion and retraction dynamic properties according to its motion direction. The nominal constant parameters of the motion platform are experimentally identified by using the proposed method. As its application, the identified parameters are applied to a design of a sliding mode controller for the simulator.

소프트웨어 정의 라디오 기반 스펙트럼 센싱 시스템 설계를 위한 단일 보드 컴퓨터 내 연산 분석 및 측정 연구 (Computational Analysis and Measurement for SDR-based Spectrum Sensing System Design on Single Board Computer)

  • 김준영
    • 한국정보통신학회논문지
    • /
    • 제23권12호
    • /
    • pp.1650-1658
    • /
    • 2019
  • 최근 IoT 기기 및 플랫폼들의 발전 및 확장과 더불어 IoT 관련 기기 내 연산 성능도 지속해서 향상하고 있다. 그러나 기기 향상과는 별개로 IoT 기기, 특히 소형 단일 보드 컴퓨터의 제한적인 크기 및 연산 자원은 해당 기기 내 통신 시스템 구현 설계를 위한 중요 고려사항 중 하나이다. 현재 다양한 무선 통신 시스템을 활용할 수 있게끔 소프트웨어 정의 라디오 (SDR) 기술을 IoT 기기에 적용 시 소형 단일 보드 컴퓨터의 하드웨어 제한 사항으로 인한 열화 가능성으로 인하여 실제 시스템의 원활한 적용을 위해 해당 컴퓨터 성능에 대한 분석 및 조사가 필요하다. 본 논문에서는 소형 단일 보드 컴퓨터 내 SDR 적용 스펙트럼 센싱 시스템 디자인을 위한 시스템 연산 분석 및 실험을 진행한다. 먼저 단일 보드 컴퓨터를 위한 SDR 기반 스펙트럼 센싱 시스템을 설계하고 시스템 성능에 영향을 줄 수 있는 다양한 요소를 실험을 통해 조사하며. 이를 통한 중요 고려사항 및 디자인 가이드 절차를 도출한다.

SUDS증발기를 사용한 2중열원 열펌프의 성능해석 (Performance analysis of dual source heat pump system with single unit dual source evaporator)

  • 우정선;이세균;이재효;박효순
    • 설비공학논문집
    • /
    • 제11권3호
    • /
    • pp.391-400
    • /
    • 1999
  • The efficiency and capacity of an air source heat pump system decrease as the ambient temperature drops. One strategy of avoiding the decrease of the efficiency and capacity in air source heat pump system is to switch to another thermal energy source. Water can be a good candidate for the heat source. This paper presents the results of the performance analysis of heat pump system with a single unit dual source(SUDS) evaporator The heat exchanger combines two separated evaporators into a single evaporator and the object of the SUDS evaporator is to recover energy from dual heat sources, i.e. air and water. Simulation program is developed for the dual source heat pump system with a SUDS evaporator and experimental data are obtained and compared with the simulation results. Differences in heating capacity and COP are 7% and 8% respectively. Simulation results are in good agreement with the test results. Therefore, the developed program is effectively used for the design and performance prediction of the dual source heat pump system with a SUDS evaporator.

  • PDF

H/V-버스 병렬컴퓨터의 설계 및 성능 분석 (Design and Performance Analysis of the H/V-bus Parallel Computer)

  • 김종현
    • 한국시뮬레이션학회논문지
    • /
    • 제3권1호
    • /
    • pp.29-42
    • /
    • 1994
  • The architecture of a MIMD-type parallel computer system is specified: a simulator is developed to support design and evaluation of systems based on the architecture: and conducted with the simulator to evaluate system performance. The horizontal/vertical-bus(H/V-bus) system architecture provides an NxN array of processing elements which communicate with each other through a network of N horizontal buses and N vertical buses. The simulator, written in SLAM II and FORTRAN, is designed to provide high-resolution in simulating the IPC mechanism. Parameters provide the user with independent control of system size, PE speed and IPC mechanism speed. Results generated by the simulator include execution times, PE utilizations, queue lengths, and other data. The simulator is used to study system performance when a partial differential equation is solved by parallel Gauss-Seidel method. For comparisons, the benchmark is also executed on a single-bus system simulator that is derived from the H/V-bus system simulator. The benchmark is also solved on a single PE to obtain data for computing speedups. An extensive analysis of results is presented.

  • PDF

A simple approach for the fundamental period of MDOF structures

  • Zhao, Yan-Gang;Zhang, Haizhong;Saito, Takasuke
    • Earthquakes and Structures
    • /
    • 제13권3호
    • /
    • pp.231-239
    • /
    • 2017
  • Fundamental period is one of the most critical parameters affecting the seismic design of buildings. In this paper, a very simple approach is presented for estimating the fundamental period of multiple-degree-of-freedom (MDOF) structures. The basic idea behind this approach is to replace the complicated MDOF system with an equivalent single-degree-of-freedom (SDOF) system. To realize this equivalence, a procedure for replacing a two-degree-of-freedom (2-DOF) system with an SDOF system, known as a two-to-single (TTS) procedure, is developed first; then, using the TTS procedure successively, an MDOF system is replaced with an equivalent SDOF system. The proposed approach is expressed in terms of mass, stiffness, and number of stories, without mode shape or any other parameters; thus, it is a very simple method. The accuracy of the proposed method is investigated by estimating the fundamental periods of many MDOF models; it is found that the results obtained by the proposed method agree very well with those obtained by eigenvalue analysis.