• Title/Summary/Keyword: A Biomass

Search Result 3,824, Processing Time 0.037 seconds

Wet Air Oxidation Pretreatment of Mixed Lignocellulosic Biomass to Enhance Enzymatic Convertibility

  • Sharma, A.;Ghosh, A.;Pandey, R.A.;Mudliar, S.N.
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.216-223
    • /
    • 2015
  • The present work explores the potential of wet air oxidation (WAO) for pretreatment of mixed lignocellulosic biomass to enhance enzymatic convertibility. Rice husk and wheat straw mixture (1:1 mass ratio) was used as a model mixed lignocellulosic biomass. Post-WAO treatment, cellulose recovery in the solid fraction was in the range of 86% to 99%, accompanied by a significant increase in enzymatic hydrolysis of cellulose present in the solid fraction. The highest enzymatic conversion efficiency, 63% (by weight), was achieved for the mixed biomass pretreated at $195^{\circ}C$, 5 bar, 10 minutes compared to only 19% in the untreated biomass. The pretreatment under the aforesaid condition also facilitated 52% lignin removal and 67% hemicellulose solubilization. A statistical design of experiments on WAO process conditions was conducted to understand the effect of process parameters on pretreatment, and the predicted responses were found to be in close agreement with the experimental data. Enzymatic hydrolysis experiments with WAO liquid fraction as diluent showed favorable results with sugar enhancement up to $10.4gL^{-1}$.

Drying Techniques of Microalgal Biomass: A Review

  • Kim, Gyu Min;Kim, Young-Kee
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.145-150
    • /
    • 2022
  • Microalgae are attracting attention as a resource for the production of biofuels, food nutrients, biochemicals, and bioplastics. Among a wide range of sources of the biomass, microalgae have been highlighted due to relatively easy cultivation, ability to eliminate carbon dioxide, and low culturing cost. Despite the great potential of microalgal biomass as a biological material, the complexity and relatively expensive downstream processes have inhibited the commercial use of microalgae. In this study, we reviewed recent techniques for microalgal drying for the production of microalgal based products. As drying processes comprise the largest portion of microalgae processing cost, an efficient drying technique is key to the utilization of microalgal biomass.

Estimation of Forest Biomass in Korea (우리나라 산림 바이오매스 추정)

  • Son, Yeong Mo;Lee, Kyeong Hak;Kim, Rae Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.4
    • /
    • pp.477-482
    • /
    • 2007
  • Forest biomass became a topic because we have growing interest in global environmental issues and environment-friendly energy resources. This study was carried out to estimate the forest biomass and develop a program for biomass information management in Korea. The total forest biomass (million ton) were 521 for gross forest, 403 for productive forest and 201 for commercial forest in 2005. Also, the annual biomass production in forest was 20 million ton which was equivalent to 94,290 Gkcal of heating value and about 9 billion won of paraffin oil. The biomass growing rate (every 10year) increased from 4.95% in 1985 to 5.30% in 1995 but turn down 4.46% in 2005. The factors that the forest stock could be converted to the forest biomass have developed according to forest type. Therefore, it is impossible to estimate the exact biomass by tree species. In this reason, the demands of the development of the factors by tree species was raised. In addition, it is on time to develop an equation for estimation of biomass by species using dbh and height as independent factors.

Effect of Carbonized Biomass Application on Organic Carbon Accumulation and Soy Bean Yields in Upland Soil

  • Lee, Sun-Il;Park, Woo-Kyun;Kim, Gun-Yeob
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Carbonized biomass could be used as a mechanism for long-term storage of C in soils. However, experimental results are variable. Objective of this study was carried out to evaluate the effect of carbonized biomass made from soybean residue on soil organic carbon and seed yield during soybean cultivation. The carbonized biomass was made by field scale mobile pyrolyzer. Pyrolyzer was performed in a reactor operated at $400{\sim}500^{\circ}C$ for 2 hours using soybean residue. The treatments consisted of four levels as the control without input and three levels of carbonized biomass inputs as $357kg\;ha^{-1}$, C-1 ; $714kg\;ha^{-1}$, C-2 ; $1,428kg\;ha^{-1}$, C-3. It was appeared that seed yield of soybean was $2,847kg\;ha^{-1}$ for control, $2,897kg\;ha^{-1}$ for C-1, $2,946kg\;ha^{-1}$ for C-2 and $3,211kg\;ha^{-1}$ for C-3 at the end of experiment. It was shown that the contents of SOC were $5.21g\;kg^{-1}$ for C-1, $5.93g\;kg^{-1}$ for C-2, $7.00g\;kg^{-1}$ for C-3 and $4.73g\;kg^{-1}$ for the control at the end of experiment. Accumulated SOC contents linearly significantly (P < 0.001) increased with increasing the carbonized biomass input. The slopes (0.00162) of the regression equations suggest that SOC contents from the soil increase by $0.162g\;kg^{-1}$ with every $100kg\;ha^{-1}$ increase of carbonized biomass rate. Consequently the carbonized biomass for byproducts such as soybean residue could increase SOC. It might be considered that the experimental results will be applied to soil carbon sequestration for future study. More long-term studies are needed to prove how long does SOC stay in agricultural soils.

Characterization of Biomass Production and Seedling Establishment of Direct-Seeded Nogyangbyeo, a Whole Crop Rice Variety for Animal Feed

  • Yang, Woon-Ho;Choi, Kyung-Jin;Kwak, Kang-Su;Park, Tae-Shik;Oh, Min-Hyuk;Shin, Jin-Chul;Kim, Jong-Geun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.3
    • /
    • pp.249-258
    • /
    • 2007
  • Experiments were conducted with aims to (1) estimate the biomass yield potential, (2) characterize the biomass and digestible dry matter production, and (3) reveal the characteristic seedling establishment of a whole crop rice variety, Nogyangbyeo, in dry- and wet-seeded rice. Maximum aboveground total biomass of Nogyangbyeo was 18 t $ha^{-1}$ in dry-seeded rice and 20 t $ha^{-1}$ in wet-seeded rice. Biomass yield potential of Nogyangbyeo was lower than that of Dasanbyeo. Comparatively, Nogyangbyeo was straw-dependent and Dasanbyeo was grain-dependent for biomass accumulation. Percentage of digestible dry matter (DDM) was higher in panicles than straw. Digestible dry matter yield was determined mainly by biomass yield rather than DDM percentage. Number of seedling establishment in Nogyangbyeo was $73m^{-2}$ in dry-seeded rice and $109m^{-2}$ in wet-seeded rice. Poor seedling establishment of dry-seeded Nogyangbyeo in the field condition was the result of low seed germination under low temperature and poor seedling emergence by deep sowing. Low seedling emergence rate of Nogyangbyeo was attributed mainly to slow elongation growth by slow leaf development and partly to mesocotyl and 1st internode lengths, not to genetically defined leaf length. The slow elongation growth of Nogyangbyeo was the same even in the high daily mean temperature of $24^{\circ}C$. Results suggest DDM yield in rice can be improved simply by increasing biomass and whole crop rice varieties should be adaptable to direct-seeding.

Evaluation of Plant Performance during Biomass Co-firing in Pulverized Coal Power Plant (미분탄화력발전에서의 바이오매스 혼소 시 플랜트 성능특성 평가)

  • Mun, Tae-Young;Tefera, Zelalem Tumsa;Lee, Uendo;Lee, Jeung Woo;Yang, Won
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.3
    • /
    • pp.8-17
    • /
    • 2014
  • The aims of this research were to evaluate effects of biomass co-firing to pulverized coal power plants and the variation of co-firing ratios on the plant efficiency related to power consumption of auxiliary system and flue gas characteristics such as production and component by process simulation based on the existing pulverized coal power plant. In this study, four kinds of biomass are selected as renewable fuel candidates for co-firing: wood pellet(WP), palm kernel shell(PKS), empty fruit bunch(EFB) and walnut shell(WS). Process simulation for various biomass fuels and co-firing ratios was performed using a commercial software. Gas side including combustion system and flue gas treatment system was considering with combination of water and steam side which contains turbines, condenser, feed water heaters and pumps. As a result, walnut shell might be the most suitable as co-firing fuel among four biomass since when 10% of walnut shell was co-fired with 90% of coal on thermal basis, flue gas production and power consumption of auxiliary systems were the smallest than those of other biomass co-firing while net plant efficiency was relatively higher than those of other biomass co-firing. However, with increasing walnut shell co-firing ratios, boiler efficiency and net plant efficiency were expected to decrease rather than coal combustion without biomass co-firing.

Renewable Energy Policy in the UK - with Focus on Biomass (영국의 신재생에너지 정책-바이오매스를 중심으로)

  • Ryu, Chang-Kook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.3
    • /
    • pp.260-265
    • /
    • 2008
  • As one of renewable energy sources, biomass is playing a major role in reducing the greenhouse gas emission in the UK. The country currently produces about 4.5% (18.1TWh in 2006) of the total electricity generation from renewables, where biomass-based sources accounts for 50% of the amount and the remainder mostly from hydro and windpower. In 2007, the UK government has announced its new energy policy through the Energy White Paper, which includes an ambitious national target of 60% cuts in carbon emission by 2050. Complementary strategic plans in key renewable energy technologies accompanied the Energy White Paper, including biomass strategy, waste strategy and low carbon transportation strategy. This paper summarizes the current status and policy of UK for renewable energy production with focus on the use of biomass and bioenergy.

OBSERVATION OF MICROPHYTOBENTHIC BIOMASS IN HAMPYEONG BAY USING LANDSAT TM IMAGERY

  • Choi, Jae-Won;Won, Joon-Sun;Lee, Yoon-Kyung;Kwon, Bong-Oh;Koh, Chul-Hwan
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.441-444
    • /
    • 2005
  • The goal of this study is to investigate the relationship between microphytobenthic biomass and normalized vegetation index obtained from Landsat TM images. Monitoring a seasonal change of microphytobenthic biomass in the sand bar is specifically focused. Since the study area, Hampyeong Bay, was difficult to approach, we failed to obtain ground truths simultaneously on satellite image acquisition. Instead, chlorophyll-a concentration in surface top layer was measured on different dates for microphytobenthic biomass. Although data were acquired on different dates, a correlation between the field and satellite images was calculated for investigating general trends of seasonal change. NDVI and tasseled cap transformed images were also used to review the variation of microphytobenthic biomass by using Landsat TM and ETM+ images. Atmosphere effects were corrected by applying COST model. Seaweeds were also flouring in the same season of microphytobentic blooming. Songseok-ri area was minimally affected by seaweeds from February to May, and selected as a test site. NDVI value was classified into high-, moderate-, and low-grade. It was well developed over fme-grained sediments and rapidly reduced from May to November over sand bar. In this bay, correlation between grain size and microphytobenthic biomass was clearly seen. From the classified NDVI and tasseled cap transformed data, we finally constructed spatial distribution and seasonal variation maps of microphytobenthic biomass.

  • PDF

Economic Assessment of Biomass Heating for Rural Application (바이오매스를 이용한 농업용 난방계획의 경제성 검토)

  • Hong, Seong-Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.2
    • /
    • pp.45-52
    • /
    • 2005
  • Biomass is one of the most competitive renewable energy resource and can be used for heating for rural applications. A economic assessment was made of biomass heating, using the tool BIOH2000 from $RETScreen^{\circledR}$ International Clean Energy Decision Support Centre. For a 260kW heating system for 50 farm houses, the assessment showed a very promising results. Internal rate of return was $19.7\%$ and year-to-positive cash flow was 5.1 years. Relative price of biomass over fossil fuel significantly affected the economic feasibility of the project. Heating demand was directly related to annual demand of biomass and economic feasibility. Relative cost of distribution pipe over the total initial costs also affected the economic feasibility of the project. The economic feasibility was expected to be improved by the probable greenhouse emission reduction credit and reduction of initial costs through utilizing existing heating system for peak or back up heating system.

Study of vascular hydrophyte vegetation and biomass in Bigumdo, Shinangun, Korea (신안군 비금도의 관속수생식물의 식생 및 생산량(Biomass)에 관한 연구)

  • Yang, Hyo-Sik
    • Journal of Wetlands Research
    • /
    • v.8 no.2
    • /
    • pp.65-74
    • /
    • 2006
  • A study of the vascular hydrophyte communities and biomass was undertaken in the Bigumdo wetlands, Shinangun, from March to November, 2005. As a result, the vegetation was divided into 14 communities. Among them, emergent hydrophytes consisted of 6 communities, including Miscanthus sacchariflorus community, Phragmites communis community, Typha angustata community, Leersia japonica community, Paspalum disticum var. indutum community, and Persicaria thunbergii community, floating hydrophytes 5 communities including Hydrocharis dubia community, Nelumbo nucifera community, Euryale ferox community, Trapa japonica community and Nymphaea tetragona var. angusta community, free-floating hydrophytes 2 commuinties including Lemna paucicostata community and Spirodela polyrhiza community, and submergent hydrophyte 1 community, including Myriophyllum verticillatum community. Biomass was the highest at emergent hydrophytes and decreased along the life form, in the order like floating hydrophytes, submergent hydrophyte and free-floating hydrophytes. In addition, hydrophytes in the Bigumdo wetland showed the typical vertical zonation pattern like a natural swamp. These results were considered that the wetland of Bigumdo was characterized by the typical structure of aquatic plant ecosystem.

  • PDF