Browse > Article
http://dx.doi.org/10.14478/ace.2022.1007

Drying Techniques of Microalgal Biomass: A Review  

Kim, Gyu Min (Department of Chemical Engineering, Research Center of Chemical Technology, Hankyong National University)
Kim, Young-Kee (Department of Chemical Engineering, Research Center of Chemical Technology, Hankyong National University)
Publication Information
Applied Chemistry for Engineering / v.33, no.2, 2022 , pp. 145-150 More about this Journal
Abstract
Microalgae are attracting attention as a resource for the production of biofuels, food nutrients, biochemicals, and bioplastics. Among a wide range of sources of the biomass, microalgae have been highlighted due to relatively easy cultivation, ability to eliminate carbon dioxide, and low culturing cost. Despite the great potential of microalgal biomass as a biological material, the complexity and relatively expensive downstream processes have inhibited the commercial use of microalgae. In this study, we reviewed recent techniques for microalgal drying for the production of microalgal based products. As drying processes comprise the largest portion of microalgae processing cost, an efficient drying technique is key to the utilization of microalgal biomass.
Keywords
Microalgae; Drying techniques; Downstream process; Biomass; $CO_2$ conversion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Mohn and C. Soeder, Improved technologies for the harvesting and processing of microalgae and their impact on production costs, Arch. Hydrobiol. Bech. Ergebn. Lemnol., 1, 228-253 (1978).
2 A. Fudholi, K. Sopian, M. Y. Othman, and M. H. Ruslan, Energy and exergy analyses of solar drying system of red seaweed, Energy Build., 68, 121-129 (2014).   DOI
3 T. Viswanathan, S. Mani, K. Das, S. Chinnasamy, A. Bhatnagar, R. Singh, and M. Singh, Effect of cell rupturing methods on the drying characteristics and lipid compositions of microalgae, Bioresour. Technol., 126, 131-136 (2012).   DOI
4 C. J. Soeder, Massive cultivation of microalgae: results and prospects, Hydrobiologia, 72, 197-209 (1980).   DOI
5 K. Sander and G. S. Murthy, Life cycle analysis of algae biodiesel, Int. J. Life Cycle Assess., 15, 704-714 (2010).   DOI
6 C. G. Khoo, Y. K. Dasan, M. K. Lam, and K. T. Lee, Algae biorefinery: review on a broad spectrum of downstream processes and products, Bioresour. Technol., 292, 121964 (2019).   DOI
7 J. Brink and S. Marx, Harvesting of Hartbeespoort Dam micro-algal biomass through sand filtration and solar drying, Fuel, 106, 67-71 (2013).   DOI
8 F. Delrue, P.-A. Setier, C. Sahut, L. Cournac, A. Roubaud, G. Peltier, and A.-K. Froment, An economic, sustainability, and energetic model of biodiesel production from microalgae, Bioresour. Technol., 111, 191-200 (2012).   DOI
9 J. Prakash, B. Pushparaj, P. Carlozzi, G. Torzillo, E. Montaini, and R. Materassi, Microalgal Biomass Drying By a Simple Solar Device, Int. J. Sol. Energy, 18, 303-311 (1997).   DOI
10 A. Aliyu, J. Lee, and A. Harvey, Microalgae for biofuels via thermochemical conversion processes: A review of cultivation, harvesting and drying processes, and the associated opportunities for integrated production, Bioresour. Technol. Rep., 14, 100676 (2021).   DOI
11 B. Wang, Y. Li, N. Wu, and C. Q. Lan, CO2 bio-mitigation using microalgae, Appl. Microbiol. Biotechnol., 79, 707-718 (2008).   DOI
12 E. Lawrenz, E. J. Fedewa, and T. L. Richardson, Extraction protocols for the quantification of phycobilins in aqueous phytoplankton extracts, J. Appl. Phycol., 23, 865-871 (2011).   DOI
13 L.-P. Lin, Microstructure of spray-dried and freeze-dried micro-algal powders, Food Struct., 4, 341-348 (1985).
14 X. Liu, A. F. Clarens, and L. M. Colosi, Algae biodiesel has potential despite inconclusive results to date, Bioresour. Technol., 104, 803-806 (2012).   DOI
15 B. Mee-ngern, S. J. Lee, J. Choachamnan, and W. Boonsupthip, Penetration of juice into rice through vacuum drying, LWT, 57, 640-647 (2014).   DOI
16 E. Becker and L. V. Venkataraman, Biotechnology and Exploitation of Algae-the Indian Approach, 216, Agency for Technical Cooperation, Eschlorm, Germany (1982).
17 A. Singh and S. I. Olsen, A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels, Appl. Energy, 88, 3548-3555 (2011).   DOI
18 R. B. Draaisma, R. H. Wijffels, P. E. Slegers, L. B. Brentner, A. Roy, and M. J. Barbosa, Food commodities from microalgae, Curr. Opin. Biotechnol., 24, 169-177 (2013).   DOI
19 C. Song, Q. Liu, N. Ji, S. Deng, J. Zhao, and Y. Kitamura, Intensification of microalgae drying and oil extraction process by vapor recompression and heat integration, Bioresour. Technol., 207, 67-75 (2016).   DOI
20 G. Shelef, A. Sukenik, and M. Green, Microalgae harvesting and processing: a literature review, United States. https://doi.org/10.2172/6204677 (1984).   DOI
21 F. de Farias Neves, M. Demarco, and G. Tribuzi, Drying and quality of microalgal powders for human alimentation. In: Microalgae-From Physiology to Application, IntechOpen Ltd., London, UK (2019).
22 S. Y. Lee, J. M. Cho, Y. K. Chang, and Y.-K. Oh, Cell disruption and lipid extraction for microalgal biorefineries: A review, Bioresour. Technol., 244, 1317-1328 (2017).   DOI
23 J. Iqbal, Development of cost-effective and benign lipid extraction system for microalgae, Doctoral Dissertation, Louisiana State University, USA (2012).
24 N. Abdel-Raouf, A. Al-Homaidan, and I. Ibraheem, Microalgae and wastewater treatment, Saudi J. Biol. Sci., 19, 257-275 (2012).   DOI
25 K. Li, Q. Liu, F. Fang, R. Luo, Q. Lu, W. Zhou, S. Huo, P. Cheng, J. Liu, and M. Addy, Microalgae-based wastewater treatment for nutrients recovery: A review, Bioresour. Technol., 291, 121934 (2019).   DOI
26 R. A. Ynalvez, J. Dinamarca, and J. V. Moroney, Algal Photosynthesis, John Wiley & Sons, Inc., New Jersey, USA (2018).
27 C. Chen, S. Yang, and X. Bu, Microwave drying effect on pyrolysis characteristics and kinetics of microalgae, BioEnergy Research, 12, 400-408 (2019).   DOI
28 S. Chandrasekaran, S. Ramanathan, and T. Basak, Microwave food processing-A review, Food Res. Int., 52, 243-261 (2013).   DOI
29 N. C. Silva, M. V. Machado, R. J. Brandao, C. R. Duarte, and M. A. Barrozo, Dehydration of microalgae Spirulina platensis in a rotary drum with inert bed, Powder Technol., 351, 178-185 (2019).   DOI
30 C. Ochoa-Martinez, P. Quintero, A. Ayala, and M. Ortiz, Drying characteristics of mango slices using the Refractance Windowtm technique, J. Food Eng., 109, 69-75 (2012).   DOI
31 R. V. Kapoore, T. O. Butler, J. Pandhal, and S. Vaidyanathan, Microwave-assisted extraction for microalgae: from biofuels to biorefinery, Biology, 7, 18 (2018).   DOI
32 B. Behera and P. Balasubramanian, Experimental and modelling studies of convective and microwave drying kinetics for microalgae, Bioresour. Technol., 340, 125721 (2021).   DOI
33 A. Larrosa, A. Comitre, L. Vaz, and L. Pinto, Influence of air temperature on physical characteristics and bioactive compounds in vacuum drying of Arthrospira spirulina, J. Food Process Eng., 40, e12359 (2017).   DOI
34 F. Wollmann, S. Dietze, J. U. Ackermann, T. Bley, T. Walther, J. Steingroewer, and F. Krujatz, Microalgae wastewater treatment: Biological and technological approaches, Eng. Life Sci., 19, 860-871 (2019).   DOI
35 L. Zhu, Y. Nugroho, S. Shakeel, Z. Li, B. Martinkauppi, and E. Hiltunen, Using microalgae to produce liquid transportation biodiesel: what is next?, Renew. Sust. Energ. Rev., 78, 391-400 (2017).   DOI
36 C.-L. Chen, J.-S. Chang, and D.-J. Lee, Dewatering and drying methods for microalgae, Drying Technol., 33, 443-454 (2015).   DOI
37 R. Sivaramakrishnan, S. Suresh, A. Pugazhendhi, J. M. N. Pauline, and A. Incharoensakdi, Response of Scenedesmus sp. to microwave treatment: Enhancement of lipid, exopolysaccharide and biomass production, Bioresour. Technol., 312, 123562 (2020).   DOI
38 M. Aziz, T. Oda, and T. Kashiwagi, Enhanced high energy efficient steam drying of algae, Appl. Energy, 109, 163-170 (2013).   DOI
39 H. Zheng, Z. Gao, J. Yin, X. Tang, X. Ji, and H. Huang, Harvesting of microalgae by flocculation with poly (γ-glutamic acid), Bioresour. Technol., 112, 212-220 (2012).   DOI
40 C. Dixon and L. R. Wilken, Green microalgae biomolecule separations and recovery, Bioresour. Bioprocess., 5, 1-24 (2018).   DOI
41 O. O. Agbede, E. O. Oke, S. I. Akinfenwa, K. T. Wahab, S. Ogundipe, O. A. Aworanti, A. O. Arinkoola, S. E. Agarry, O. O. Ogunleye, and F. N. Osuolale, Thin layer drying of green micro-algae (Chlorella sp.) paste biomass: drying characteristics, energy requirement and mathematical modeling, Bioresour. Technol. Rep., 11, 100467 (2020).   DOI
42 A. P. Biz, L. Cardozo-Filho, and E. F. Zanoelo, Drying dynamics of microalgae (Chlorella pyrenoidosa) dispersion droplets, Chem. Eng. Process. - Process Intensif., 138, 41-48 (2019).   DOI
43 C. K. Phwan, H. C. Ong, W.-H. Chen, T. C. Ling, E. P. Ng, and P. L. Show, Overview: comparison of pretreatment technologies and fermentation processes of bioethanol from microalgae, Energy Convers. Manag., 173, 81-94 (2018).   DOI
44 J. C. de Carvalho, A. I. Magalhaes Jr, G. V. de Melo Pereira, A. B. P. Medeiros, E. B. Sydney, C. Rodrigues, D. T. M. Aulestia, L. P. de Souza Vandenberghe, V. T. Soccol, and C. R. Soccol, Microalgal biomass pretreatment for integrated processing into biofuels, food, and feed, Bioresour. Technol., 300, 122719 (2020).   DOI
45 M. Irshad, M. E. Hong, A. A. Myint, J. Kim, and S. J. Sim, Safe and complete extraction of astaxanthin from Haematococcus pluvialis by efficient mechanical disruption of cyst cell wall, Int. J. Food Eng., 15, 20190128 (2019).
46 M. E. Abd El-Hack, S. Abdelnour, M. Alagawany, M. Abdo, M. A. Sakr, A. F. Khafaga, S. A. Mahgoub, S. S. Elnesr, and M. G. Gebriel, Microalgae in modern cancer therapy: Current knowledge, Biomed. Pharmacother., 111, 42-50 (2019).   DOI
47 C.-Y. Chen, K.-L. Yeh, R. Aisyah, D.-J. Lee, and J.-S. Chang, Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review, Bioresour. Technol., 102, 71-81 (2011).   DOI
48 M. M. Phukan, R. S. Chutia, B. Konwar, and R. Kataki, Microalgae Chlorella as a potential bio-energy feedstock, Appl. Energy, 88, 3307-3312 (2011).   DOI
49 E. Forjan, F. Navarro, M. Cuaresma, I. Vaquero, M. C. Ruiz-Dominguez, Z. Gojkovic, M. Vazquez, M. Marquez, B. Mogedas, and E. Bermejo, Microalgae: fast-growth sustainable green factories, Crit. Rev. Environ. Sci. Technol., 45, 1705-1755 (2015).   DOI
50 J. S. Tan, S. Y. Lee, K. W. Chew, M. K. Lam, J. W. Lim, S.-H. Ho, and P. L. Show, A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids, Bioengineered, 11, 116-129 (2020).   DOI
51 K.-Y. Show, D.-J. Lee, and J.-S. Chang, Algal biomass dehydration, Bioresour. Technol., 135, 720-729 (2013).   DOI
52 L. Yanfen, H. Zehao, and M. Xiaoqian, Energy analysis and environmental impacts of microalgal biodiesel in China, Energy Policy, 45, 142-151 (2012).   DOI
53 F. Fasaei, J. Bitter, P. Slegers, and A. Van Boxtel, Techno-economic evaluation of microalgae harvesting and dewatering systems, Algal Res., 31, 347-362 (2018).   DOI
54 S. Pierobon, X. Cheng, P. Graham, B. Nguyen, E. Karakolis, and D. Sinton, Emerging microalgae technology: a review, Sustain. Energy Fuels, 2, 13-38 (2018).   DOI
55 R. Rubio, M. Ruiz-Chancho, and J. Lopez-Sanchez, Sample pre-treatment and extraction methods that are crucial to arsenic speciation in algae and aquatic plants, TrAC Trends Anal. Chem., 29, 53-69 (2010).   DOI
56 J.-Y. Lee, C. Yoo, S.-Y. Jun, C.-Y. Ahn, and H.-M. Oh, Comparison of several methods for effective lipid extraction from microalgae, Bioresour. Technol., 101, 75-77 (2010).
57 S. Nagappan, S. Devendran, P.-C. Tsai, S. Dinakaran, H.-U. Dahms, and V. K. Ponnusamy, Passive cell disruption lipid extraction methods of microalgae for biofuel production-a review, Fuel, 252, 699-709 (2019).   DOI
58 D.-J. Lee, G.-Y. Liao, Y.-R. Chang, and J.-S. Chang, Coagulation-membrane filtration of Chlorella vulgaris, Bioresour. Technol., 108, 184-189 (2012).   DOI
59 C. V. Al Rey, A. P. Mayol, A. T. Ubando, J. B. M. M. Biona, N. B. Arboleda, M. Y. David, R. B. Tumlos, H. Lee, O. H. Lin, and R. A. Espiritu, Microwave drying characteristics of microalgae (Chlorella vulgaris) for biofuel production, Clean Technol. Environ. Policy, 18, 2441-2451 (2016).   DOI