• 제목/요약/키워드: A(Depth of Cut)

검색결과 612건 처리시간 0.026초

브러시 연삭 공구의 연삭 특성 분석 (Characterization of Brush Grinding System)

  • 백재용;유송민;신관수
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 추계학술대회논문집 - 한국공작기계학회
    • /
    • pp.309-313
    • /
    • 2000
  • In order to meet the industrial requirement, precision grinding with brush tool has been applied. To analyze the brush tool characteristics, several parameters including numbers of brush string installed in a single holder, depth of cut and brush length have been changed. Several data from various source were acquired using AE, acceleration and tool dynamometer during the process. Consistent results revealing certain trend with respect to each process condition were observed.

  • PDF

球狀黑鉛鑄鐵의 其他組織이 切削性에 미치는 영향 I (The Effest of Matrix of Nodular Graphite Cast Iron on Machinability in Lathe Turning - Cutting Force, Cutting Ratio and Shear Angle-)

  • 성환태;안상욱
    • 대한기계학회논문집
    • /
    • 제10권6호
    • /
    • pp.807-813
    • /
    • 1986
  • 본 연구에서는 국내에서 생산되고 있는 구상흑연주철을 이단으로 어니일링하 여 기타조직을 3가지(p$_{1}$:28.88% 페라이트, 63.5% 퍼얼라이트, p$_{2}$:49.7% 페 라이트, 42.2% 퍼얼라이트, p$_{3}$:71.26% 페라이트, 22.3% 퍼얼라이트)로 변화시켜 족삭에서 이차원절삭실험을 실시하여 기타조직에 따라 제절삭성(절삭력, 절삭비, 전단 각 및 침의 흐름속도)을 비교검토 하므로서 어니일링효과가 절삭성에 미치는 영향을 검토 연구하였다.

고속 CNC 선반의 동특성 해석과 채터 예측 (Dynamic Characteristics Analysis and Chatter Prediction in High Speed CNC Lathe)

  • 이우석;이신영;이장무
    • 한국정밀공학회지
    • /
    • 제16권7호
    • /
    • pp.151-157
    • /
    • 1999
  • Vibrations in machine tools make many problems in precision, production efficiency, and machine performance. The relative vibration between a workpiece and a tool is very complicated due to many sources. In this study, the dynamic characteristics of a newly developed CNC lathe were analyzed and its chatter characteristics were predicted by a chatter analysis method using finite element analysis and 3 dimensional cutting dynamics. The simulated results showed very complex characteristics of chatter vibration and the borderline of limiting depth of cut was used as the stability limit. To check the validity of this method, cutting tests were done in the CNC lathe using a boring bar as a tool because boring process is very weak due to long overhang . The experimental results showed that the simplified borderline was to be considered as limiting depth of cut at which the chatter vibration starts and the stability limits depended on various cutting parameters such as cutting speed, feed and nose radius of tool.

  • PDF

Three new species of Polysiphonia sensu lato (Rhodophyta) based on the morphology and molecular evidence

  • Kim, Byeongseok;Kim, Myung Sook
    • ALGAE
    • /
    • 제29권3호
    • /
    • pp.183-195
    • /
    • 2014
  • There are recognized three new species of Polysiphonia sensu lato at a 10-20 m water depth from Jeju Island, Korea. We described the morphology of three new species and analyzed rbcL sequences to infer phylogenetic relationships among Polysiphonia sensu lato. Polysiphonia amplacapilli sp. nov. is characterized by an epiphytic, discoid holdfast, 5-7 pericentral cells, large trichoblasts, lateral branches connecting with trichoblasts, only slightly corticated in the basal parts, cut-off rhizoids and a spiral arrangement of tetrasporangia. Polysiphonia morroides sp. nov. is characterized by saxicolous, cut-off rhizoids, four pericentral cells, ecorticate, spiral arrangement of tetrasporangia, and it was collected at the fast-flowing water habitat in 20-25 m depth. Polysiphonia sabulosia sp. nov. is characterized by ecorticate, 5-6 pericentral cells, a single filamentous trichoblast, lateral branches connecting with the trichoblasts, cut-off rhizoids, and spiral arrangement of tetrasporangia, and is growing in the sandy locations. The phylogenetic analysis of rbcL sequences demonstrated that three new species are clearly distinguished from other species of Polysiphonia sensu lato.

대절토사면에 보강된 억지말뚝의 활동억지효과에 관한 연구 (Reinforcement Effect of Stabilizing Piles in Large-scale Cut Slops)

  • 홍원표;한중근;송영석;신도순
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 사면안정학술발표회
    • /
    • pp.65-81
    • /
    • 2003
  • During the last few decades in Korea, the development of hillside or mountain areas has rapidly increased for infrastructure construction such as railroads, highways and housing. Many landslides have occurred during these constructions. Also, the amount and scale of damage caused by landslides have increased every year. In the case of Far East Asia including Korea, the damage of landslides is consequently reported during the wet season. In this paper, the effect of stabilizing piles on slope stability is checked and the behavior of slope soil and piles are observed throughout the year by field measurements in the large-scale cut slopes. In particular a large-scale cut slope situated on the construction site for the express highway in Donghae, Korea. First of all, The behavior of the slope soil was measured by inclinometers during slope modification. Landslides occurred in this area due to the soil cutting for slope modification. The horizontal deformations of slope soil gradually increased and rapidly decreased at depth of sliding surface indicating that the depth of sliding surface below the ground surface can be predicted. On the basis of being able to predict the depth of the sliding surface, stabilizing piles were designed and constructed in this slope. To ensure the stability of the reinforced slope using stabilizing piles, an instrumentation system was installed. The maximum deflection of piles is measured at the pile head and it is noted that the piles deform like deflection on a cantilever beam. The maximum bending stress of piles is measured at the soil layer. The pile above the soil layer is subjected to lateral earth pressure due to driving force of the slope, while pile below soil layer is subjected to subgrade reaction against pile deflection. As a result of research, the effect and applicability of stabilizing piles in large-scale cut slopes could be confirmed sufficiently.

  • PDF

Burr and Shape Distortion Micro-Grooving of Non-Ferrous Metals Using a Diamond Tool

  • Ahn, Jung-Hwan;Lim, Han-Seok;Son, Seong-Min
    • Journal of Mechanical Science and Technology
    • /
    • 제14권11호
    • /
    • pp.1244-1249
    • /
    • 2000
  • Burr and shape distortion are two main problems in micro-grooving. In this study, a simplified model is proposed based on large thrust force due to the tool edge radius. Experiments are conducted with a single crystal diamond tool on a 3-axis snaper-like machine varying the depth of cuts, and groove angles on brass, aluminum and OFHC. Experiments have shown that the thrust force becomes a dominant variable in burr generation compared to the principal force when the depth of cut is less than 2${\mu}m$. And fewer burrs develop on more brittle materials. Shape distortion is significant only when the groove angle is small and the depth of cut is larger than 30 ${\mu}m$.

  • PDF

비원형 단면의 선삭 가공시 발생하는 진동해석 (Vibration Analysis of a Lathe Performing Non-Circular Cutting)

  • 신응수;박정호
    • 소음진동
    • /
    • 제10권2호
    • /
    • pp.291-298
    • /
    • 2000
  • This paper intends to provide an analytic vibrational model of non-circular cutting by a lathe and to investigate its stability criteria. A single degree-of-freedon model based on the orthogonal cutting theory has the characteristics of parametric excitation due to the nonlinear cutting force that changes periodically its direction as well as its magnitude. The Floquet theory has been applied to investigate the stability of the linearized system and the stability diagrams have been obtained with respect to the ovality, the cut velocity and the cut depth. Also nonlinear analysis has been performed to verify the linear analysis and compare the results with those from circular cutting. Results show that a critical cut depth is decreased as the ovality is increased while a critical cut velocity is increased as the ovality is increased. Also, a good agreement in critical conditions has been observed between the linear and nonlinear analyses for the ovality less than 2%. Accordingly, the linear analysis can be said to be applicable for most practical oval cuttings whose ovality are much less than 2%.

  • PDF

이종 금속의 선삭 가공 특성에 관한 연구 (Turning Characteristics of differential materials)

    • 한국생산제조학회지
    • /
    • 제7권3호
    • /
    • pp.43-50
    • /
    • 1998
  • In the use of CNC machine tool, the unmanned production system has been growing in the manufacturing field. Thus, it is necessary to monitor adequate tool fracture during the cutting process efficiently. This experimental study is intended to investigate the development of flank wear in sysnchronous turning of differential materials(Aℓ/GC) which is used in industrial application and it is acknowledged as a machine to difficult material. In cutting process change of velocity, change of feed, and change of depth of cut were investigated on the effect of flank wear, and slenderness ratio is also investigated. The conclusions of this paper are summarized as follows; 1.Under the high cutting speed condition, the flank wear is affected by the feed and depth of cut. but the influence of feed on the flank wear is larger than the depth of cut and that is reduced when the velocity is low. 2.Under the high cutting speed, as the smaller slenderness ratio is, the shorter tool life is under the lower cutting speed, the effect of slenderness ratio on the flank wear is low. 3.Using the characteristics of cutting force, the flank wear of a tool can be detected 4. Investigating the development of flank wear, there are almost no differences between the characteristics of cutting force and feed force. Finally, these data from the differntial materials cutting process will be used in the basic field of precision and economic cutting process.

  • PDF

Al6061의 엔드밀 절삭가공에서 초음파 진동이 가공 표면에 미치는 영향 (Effects of Ultrasonic Vibration on Machined Surface of Aluminium 6061 in Endmill Cutting Process)

  • 정명원;곽태수;김명규;김건희
    • 한국기계가공학회지
    • /
    • 제13권3호
    • /
    • pp.96-102
    • /
    • 2014
  • This study focused on the effects of ultrasonic vibration on a machined surface of Al6061 material in the endmill cutting process. It is known that ultrasonic vibration greatly increases the efficiency of the machining process when cutting or grinding. An ultrasonic vibration table was developed for application to ultrasonic vibration endmill machining experiments.Inthisstudy,the surface roughness and actual depth of the cut measured confirm the effects of ultrasonic vibration. As a result of the experiments, the actual depth of the cut increased during endmill machining when using ultrasonic vibration. The surface roughness was improved with increases in the amplitude of the vibration and the depth of the cut.

고능률 가공을 위한 절삭 동력 기반의 이송 속도 최적화 (Cutting Power Based Feedrate Optimization for High-Efficient Machining)

  • 조재완;김석일
    • 대한기계학회논문집A
    • /
    • 제29권2호
    • /
    • pp.333-340
    • /
    • 2005
  • Feedrate is one of the factors that have the significant effects on the productivity, qualify and tool life in the cutting mechanism as well as cutting velocity, depth of cut and width of cut. In this study, in order to realize the high-efficient machining, a new feedrate optimization method is proposed based on the concept that the optimum feedrate can be derived from the allowable cutting power since the cutting power can be predicted from the cutting parameters as feedrate, depth of cut, width of cut, chip thickness, engagement angle, rake angle, specific cutting force and so on. Tool paths are extracted from the original NC program via the reverse post-processing process and converted into the infinitesimal tool paths via the interpolation process. And the novel NC program is reconstructed by optimizing the feedrate of infinitesimal tool paths. Especially, the fast feedrate optimization is realized by using the Boolean operation based on the Goldfeather CSG rendering algorithm, and the simulation results reveal the availability of the proposed optimization method dramatically reducing the cutting time and/or the optimization time. As a result, the proposed optimization method will go far toward improving the productivity and qualify.