• Title/Summary/Keyword: 900MHz 대역 안테나

Search Result 60, Processing Time 0.059 seconds

Design and Fabrication of LHCP Antenna for UHF RFID reader (UHF RFID 리더기용 LHCP 안테나 설계 및 제작)

  • Park, Sung-Il;Kim, Sun-Il;Ko, Young-Hyuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.23-30
    • /
    • 2010
  • In this paper, a design for the 900MHz bandwidth RFID reader antenna with circular polarization is proposed and experimentally investigated. The 900MHz bandwidth RFID reader antenna is proposed as a simple radiator with loading capacitor to generate LHCP(Left Hand Circular Polarization). Also, the design and fabrication of antenna has the returnloss of -32.28dB at the center frequency of 1010MHz and Bandwidth of 12.5% at 905Hz~1030MHz. Proposed LHCP antenna of maximum gain is 6dBi and satisfy axial ratio based on 2. From the measured result, axial ratios based on 2 are observed at the operating frequencies. The proposed antenna is suitable for RFID applications in wireless communications.

Design of a High-Gain Circular-Slit Antenna at 900 MHz (900 MHz 대역 고이득 원형 슬릿 안테나의 설계)

  • Choi, Yeong Seok;Cho, Choon Sik
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.1
    • /
    • pp.72-75
    • /
    • 2017
  • In this paper, we design the circular slits in the parch antenna for size reduction and high gain working at 900 MHz. Modifying the rectangular type patch, we decrease the antenna real-estate, leading to antenna miniaturization with added circular slits in itself. The antenna is tuned for under -30 dB return loss by adjusting the number of circular slits and their radii, and its design is performed for the maxim bean pattern of 4 dBi gain. Compared with the antenna without circular slits, the designed antenna shows 20 MHz downward shift of frequency, proving that the size reduction is achieved with this antenna design.

Design and fabrication of a RFID Reader Antenna in 900MHz Band (900MHz 대역 RFID 리더기 안테나 설계 및 제작)

  • Kim, Chan-Baek;Park, Seong-Il;Ko, Young-Hyuk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.125-128
    • /
    • 2008
  • In this paper, a stand-type planar antenna of 900MHz RFID band is designed and fabricated. As the proposed antenna is stand-type use of air permittivity, Bandwidth used ground height at rectangle patch structure and coaxial feed line is widen. Also wideband width can solve problem that RFID tag attached to things happens frequency shift keying phenomenon by liquid, special metal, temperature, humidity etc. Bandwidth of fabricated antenna to VSWR less than 2 is satisfied 11.9% at $890MHz{\sim}1000MHz$. And proposed antenna is circular polarization antenna of operating characteristics that axial ratio is less than 2 and gain is 6dBi.

  • PDF

Coupled-Fed Planar Monopole Antenna for LTE/WWAN Mobile Handset Applications (LTE/WWAN 이동 통신 단말기 응용을 위해 커플드 급전된 평판 모노폴 안테나)

  • Kang, Do-Gu;Lee, Jun-Hyuk;Sung, Young-Je
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.5
    • /
    • pp.475-483
    • /
    • 2013
  • In this paper, a coupled-fed monopole antenna for LTE/WWAN mobile handset applications is presented. The antenna consists of a monopole, a coupling strip, a feeding pad, a stub, and a shorting strip. The basic resonance of the monopole combines with the resonance formed by the coupling that occurs between the coupling strip and the feeding pad to include LTE700(698~787 MHz), GSM850(824~894 MHz), and GSM900(890~960 MHz) bands. The resonance of the stub combines with the harmonics of the monopole to include GSM1800(1,710~1,880 MHz), GSM1900(1,850~1,990 MHz), and UMTS(1,920~2,170 MHz) bands. Therefore, the proposed antenna is suitable as antenna for hexa-band mobile handset applications, covering LTE700, GSM850, GSM900, GSM1800, GSM1900, and UMTS bands. A stable and omni-directional radiation pattern with reasonable gains is observed within the operating bandwidth.

A Reconfigurable Antenna for Quad-Band Mobile Handset Application (4중 대역을 포함하는 휴대폰용 재구성 안테나)

  • Park, Young-Keun;Sung, Young-Je
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.5
    • /
    • pp.570-582
    • /
    • 2012
  • In the communication, a reconfigurable antenna using two PIN diodes is presented for quad-band(GSM900/GSM1800/GSM1900/UMTS) mobile handset applications. The proposed antenna has a size $45{\times}11{\times}6mm^3$. By independently adjusting the on/off states of two PIN diodes located on the radiating element, the proposed structure can be operated in the PIFA and loop mode, respectively. The PIN diodes are replaced by conducting tape in order to verify the concept. In regards to the fabricated reconfigurable antenna, when operating in the PIFA mode, the measured results show that the 7 dB bandwidth is 8.62 %. which covers the GSM900(880~960 MHz) band. When operating in the loop mode, the measured results show that the 7 dB bandwidth is 26.36 %, which covers the GSM1800(1,710~1,880 MHz), GSM1900(1,850~1,990 MHz), and UMTS(1,920~2,170 MHz) bands, respectively.

A Study on Design of RF/UHF RFID Tag Antenna Using One-Sheet Inlay Pattern (One-Sheet Inlay 패턴을 이용한 RF/UHF RFID 태그 안테나 설계에 관한 연구)

  • Hwang, Gi-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1943-1949
    • /
    • 2010
  • In this paper, we developed a RFID tag antenna using one-sheet inlay pattern which consist of two different frequencies in one layer. The antenna in one-sheet inlay RFID tag does not use different kind RFID antennas in a card but implement 13.56MHz and 900MHz RFID tag antennas in one sheet. In order to evaluate the usability of proposed method, we configured test equipments and designed 6 different patterns and test the recognition distance of each pattern. Among the one-sheet inlay RFID tag antenna designs, the pattern no.5 has good performance with recognition distance of 5.34m at 900MHz and 3.5m at 13.56MHz.

Design of 900MHz Diagonal Slotted Type Microstrip Patch Antenna (900MHz 대각선 슬롯형 마이크로스트립 패치안테나 설계)

  • Park, Byeong-Ho;Park, Chan-Hong;Park, Sang-Joo;Choi, Yong-Seok;Seong, Hyeon-Kyeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.525-529
    • /
    • 2009
  • In this paper, microstrip patch antenna with diagonal slotted type using RFID is designed. This microstrip patch antenna is designed by considering the properties of critical parameter like the size, the truncating dimension, position of feed power and the height of airspace. the designed microstrip patch antenna has the lowest return loss in 915MHz, and in case of the voltage standing wave ratio(VSWR) is less than 1.2 under return loss -16dB, it has bandwidth of about 26MHz. Also, the microstrip patch antenna has the gain of 6dBi on the center frequency of 915MHz band and 2.8dB in the rate of reduction.

  • PDF

Design and fAbrication of Triple Band WLAN Antenna Applicable to Wi-Fi 6E Band with DGS (DGS를 갖는 Wi-Fi 6E 대역을 위한 삼중대역 WLAN 안테나 설계 및 제작)

  • Sang-Wook Park;Gi-Young Byun;Joong-Han Yoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.345-354
    • /
    • 2024
  • In this paper, we propose a triple band WLAN antenna for Wi-Fi 6E band with DGS. The proposed antenna has the characteristics required frequency band and bandwidth by considering the interconnection of two strip lines and three areas on the ground place. The total substrate size is 31 mm (W) × 50 mm (L), thickness (h) 1.6 mm, and the dielectric constant is 4.4, which is made of 22 mm (W6 + W4 + W5) × 43mm (L1 + L2 + L3 + L5) antenna size on the FR-4 substrate. From the fabrication and measurement results, bandwidths of 340 MHz (1.465 to 1.805 GHz) for 900 MHz band, 480 MHz (2.155 to 2.635 GHz) for 2.4 GHz band and 1950 MHz (4.975 to 6.925 GHz) for 5.0/6.0 GHz band were obtained on the basis of -10 dB. Also, gain and radiation pattern characteristics are measured and shown in the frequency triple band as required.

A Design of Miniaturized Built-in Penta-Band Chip Antenna for Mobile Handset (휴대 단말기 내장형 5중 대역 칩 안테나 설계)

  • Choi, Hyeng-Cheul;Kim, Hyung-Hoon;Park, Jong-Il;Kim, Hyeong-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.3 s.118
    • /
    • pp.288-297
    • /
    • 2007
  • The novel internal monopole chip antenna of penta-band operation for GSM850/GSM900/DCS/USPCS/WCDMA bands for mobile phones is proposed. This antenna occupies a small volume $8\times3.2\times20mm^3$ and is suitable to be embedded in a mobile phone as an internal antenna. The minimization of the proposed antenna was realized by using spiral line structure and meander line structure on FR-4 of dielectric$(\varepsilon_r=4.4)$. The designed antenna has the wide-band operation in the upper band by overlapping high order resonances. The measured bandwidth of this antenna (VSWR>3) is 150MHz$(1,030\sim1,180\;MHz)$ in the lower band operation and 650 MHz$(1,760\sim2,410\;MHz)$ in higher band operation. The measured radiation efficiency within bandwidth(VSWR 3:1) is over 50 %. The antenna has been designed by a commercial software HFSS.

Slit Antenna for Mobile-communication (이동통신용 슬리트안테나)

  • 이상회
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.1
    • /
    • pp.99-104
    • /
    • 1998
  • It is a good flexibility of bending body and non-interaction of outer bodies for slit antenna to be being studied and developed in this paper. The characteristics of leaked EM waves in slit transmission line are applied to antennas of tele-communication systems. The computer simulations using a special software adapt to design a new slit antenna, and to apply to tele-communications systems with frequencies of land mobile communication (800-900MHz). The good results of which reflection coefficient 511 is 0.21 and directivity is 2.9 and band-widths are 1.5MHz in 851MHz are shown.

  • PDF