• Title/Summary/Keyword: 9-node Element

Search Result 78, Processing Time 0.022 seconds

Development of Nine-node Co-rotational Planar Element for Elastoplastic/Contact Analysis (탄소성/접촉 해석을 위한 Co-rotational 정식화 기반의 9절점 평면 요소 개발)

  • Cho, Hae-Seong;Joo, Hyun-Shig;Shin, Sang Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • This paper presents development of the nine-node co-rotational(CR) planar element applicable for elastoplastic and contact analysis. The CR formulation is one of the efficient geometrically nonlinear formulations. It is based on the assumptions of small strain and large displacement. Further, it is extended to both elastoplastic analysis and contact analysis in this paper. For accurate plastic analysis, nine-node quadrilateral element, which can provide accurate stress prediction, is chosen. Bi-linear hardening rule based on Newton- Raphson return-mapping is employed. Also, Lagrange multiplier is used in order for constraints regarding the contact analysis. The present development is validated via the time transient problems. The present results are compared with those obtained by the other existing software.

A Study on the Efficient Meshfree Method Using Adaptive Refinement Analysis (적응적 세분화기법을 이용한 효율적 무요소법에 관한 연구)

  • Han, Kyu-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.5
    • /
    • pp.50-56
    • /
    • 2010
  • Meshfree methods show many advantages over finite element method(FEM) in the class of problems for which the remeshing process is inevitable when the conventional FEM used, such as propagating crack problems, large deformation and so on. One of the promising applications of meshfree methods is the adaptive refinement for problems having multi-scale nature. In this study, an adaptive node generation procedure is proposed and several numerical examples are also presented to illustrate the efficiency of proposed method.

Dynamic Stability of Cylindrical Shells Subjected to Follower Forces (종동력을 받는 원통형 쉘의 동적 안정성에 관한 연구)

  • 김현순;김지환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.396-401
    • /
    • 1997
  • Dynamic stability of cylindrical shells subjected to follower forces is analyzed in this paper. Motion of shells is formulated in curvilinear coordinates that is consistent with assumptions made in the Timoshenko beam and the Mindlin plate. Using the finite element method, the induced equations are reduced to an equation with finite degrees of freedom. The 9-node Lagrangian element is used, and reduced integration is used to avoid shear and membrane locking. The effects of thickness ratio on the dynamic stability of cylindrical shells are studied.

  • PDF

J-integral calculation by domain integral technique using adaptive finite element method

  • Phongthanapanich, Sutthisak;Potjananapasiri, Kobsak;Dechaumphai, Pramote
    • Structural Engineering and Mechanics
    • /
    • v.28 no.4
    • /
    • pp.461-477
    • /
    • 2008
  • An adaptive finite element method for analyzing two-dimensional and axisymmetric nonlinear elastic fracture mechanics problems with cracks is presented. The J-integral is used as a parameter to characterize the severity of stresses and deformation near crack tips. The domain integral technique, for which all relevant quantities are integrated over any arbitrary element areas around the crack tips, is utilized as the J-integral solution scheme with 9-node degenerated crack tip elements. The solution accuracy is further improved by incorporating an error estimation procedure onto a remeshing algorithm with a solution mapping scheme to resume the analysis at a particular load level after the adaptive remeshing technique has been applied. Several benchmark problems are analyzed to evaluate the efficiency of the combined domain integral technique and the adaptive finite element method.

Formulation and evaluation of incompatible but convergent rational quadrilateral membrane elements

  • Batoz, J.L.;Hammadi, F.;Zheng, C.;Zhong, W.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.2
    • /
    • pp.153-168
    • /
    • 2000
  • This paper presents four incompatible but convergent Rational quadrilateral elements, two four-node elements (RQ4Z and RQ4B) and two five-node elements (RQ5Z and RQ5B). The difference between the so-called Rational Finite Element (Zhong and Zeng 1996) and the Free Formulation (Bergan and Nygard 1984) are discussed and compared. The importance of the mode completeness in these formulations is emphasized. Numerical results for several benchmark problems show the good performance of these elements. The two five-nodes elements RQ5Z and RQ5B, which can be viewed as complete quadratic mode elements (with seven stress modes), always give better results than the four nodes elements RQ4Z and RQ4B.

Elastic Stability of Perforated Concrete Shear Wall (개구부를 갖는 콘크리트 전단벽의 탄성안정)

  • 김준희;김순철
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.251-259
    • /
    • 1998
  • Concrete shear wall with opening is modeled as a rectangular thin plate. The stability analysis results are presented by the buckling coefficient, k, for two different boundary conditions. The other parameters whose variation have been considered are the ratio of the bending induced force to gravity force, a, the ratio of the horizontal shear force to the gravity force ratio, A and the change of location and the size of perforated part. To obtain the results by finite element method, an example plate has been divided into 27*9 square elements. Four node rectangular c.deg. continuous finite elements having three degrees of freedom per each node is adopted. It is generally concluded that the buckling coefficients decrease as the size of hole increases, and the location of hole moves to free edge of the wall.

  • PDF

Growth Characteristics and Change of Inorganic Element in the Leaf of Perilla by Replanting (잎들깨의 연작에 따른 생장특성과 엽내 무기원소의 함량변화)

  • 하상영;박선일
    • Journal of Life Science
    • /
    • v.9 no.5
    • /
    • pp.620-627
    • /
    • 1999
  • This study was conducted to elucidate the growth characteristics and change of inorganic element in the leaf of perilla by replanting. The replanting injury in the height of perilla appeared from the 2nd and 3rd year after replanting, and the sickness of soil occurred from the 4th year. Number of node of perilla by replanting was significantly affected to the middle stage of growth, but was similar at the latter stage of growth. Weight of a leaf was the highest at the 1st and 2nd year, and decreased with the replanting. Also, the rate of dry leaf decreased with the replanting. In the content of inorganic element of the perilla leaf by replanting, N in the leaf increased with the replanting, and K and S decreased. However the content of Ca, Cu and Mn did not affected to replanting.

  • PDF

Crippling Analysis of Z-Section Composite Stringers (Z-단면 복합재 스트링거의 크리플링 해석)

  • 권진회
    • Composites Research
    • /
    • v.12 no.6
    • /
    • pp.65-73
    • /
    • 1999
  • Crippling stress and failure behavior of Z-section graphite/epoxy composite laminated stringers are investigated by the nonlinear finite element method. Stringers are idealized using 9-node laminated shell element. The complete unloading model is introduced into the finite element method for the progressive failure analysis. A modified Riks method is used to trace the post-failure equilibrium path after local buckling. Finite element results are validated with previous experimental results. The results show that the most important parameter affecting the crippling stress of Z-section stringers is the flange width. In terms of stacking sequence. the highest cripping stress is found at the stringer with $[{\pm}45/0/90]s$ lamination.

  • PDF

A Study on 3D Smoothed Finite Element Method for the Analysis of Nonlinear Nearly-incompressible Materials (비선형 비압축성 물질의 해석을 위한 3차원 Smoothed FEM)

  • Lee, Changkye;Yee, Jurng-Jae
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.9
    • /
    • pp.159-169
    • /
    • 2019
  • This work presents the three-dimensional extended strain smoothing approach in the framework of finite element method, so-called smoothed finite element method (S-FEM) for quasi-incompressible hyperelastic materials undergoing the large deformations. The proposed method is known that the incompressible limits, such as over-estimation of stiffness and distorted mesh sensitivity, can be overcome in two dimensions. Therefore, in this paper, the idea of Cell-based, Edge-based and Node-based strain smoothing approaches is extended to three-dimensions. The construction of subcells and smoothing domains for each methods are explained. The smoothed strain-displacement matrix and the stiffness matrix are obtained on each smoothing domain in the same manner with two-dimensional S-FEM. Various numerical tests are studied to demonstrate the validity and accuracy of 3D-S-FEM. The obtained results are compared with analytical solutions to express the efficacy of the methods.

A Study on the Stress Wave Propagation of Composite Laminate Subjected to Low-Velocity Impact (저속 충격을 받는 적층 복합재의 응력파 전파에 관한 연구)

  • 안국찬;김문생;김규남
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.9-19
    • /
    • 1989
  • The impact stress and wave propagation of graphite/epoxy and glass/epoxy laminates subjected to the transverse low-velocity impact of steel balls are investigated theoretically. A plate finite element model based on Whitney and Pagano's theory for the analysis of heterogeneous and anisotropic plates taking into account of the transverse shear deformation is used for the theoretical investigation. This model is in conjuction with static contact laws. The basic element is a four-node quadrilateral with the five degrees-of-freedom per node. The reduced integration technique is used for shear locking associated with low-order function in application to thin plates. These two materials are composed of [0.deg./45.deg./0.deg./-45.deg./0.deg.]$_{2S}$ and [90.deg./45.deg./90.deg./-45.deg./90.deg.]$_{2S}$ stacking sequences and have clamped-clamped boundary conditions. Finally, the present results are compared with an existing solution and wave propagation theory and then impact stress and wave propagation phenomena are investigated.gated.