• Title/Summary/Keyword: 802.15.3

Search Result 339, Processing Time 0.03 seconds

A Robust Coherent IR-UWB Channel Estimation Method Against Imperfect Synchronization (동기식 IR-UWB 시스템에서 불완전 동기 환경에 강인한 채널 추정 기법)

  • Hwang, In-Jae;Kim, Jeong-Been;Oh, Wang-Rok;Ahn, Jae-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3A
    • /
    • pp.205-212
    • /
    • 2009
  • A novel channel estimation scheme is proposed for coherent Impulse Radio Ultra Wideband (IR-UWB) system based on IEEE 802.15.4a specification. By extracting and utilizing the information on the frequency synchronization, the proposed channel estimation algorithm improves the receiver performance even under the restricted number of preamble symbols in IEEE 802.15.4a signal format. Simulation results over the IEEE 802.15.4a channel models show the performance gain with the proposed algorithm compared to ordinary channel estimation method.

Data Transmission Rate Improvement Scheme Using Multicast ACK in IEEE 802.15.3 (IEEE 802.15.3에서 Multicast ACK를 이용한 전송률 향상 기법)

  • Jeong, Pil-Seong;Kim, Hwa-Sung;Oh, Young-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.10
    • /
    • pp.35-42
    • /
    • 2011
  • WPAN(Wireless Personal Area Network) have many advantages such as using low power and cheap price, small size. So it is recently increasing application range such as personal portable device, home network and sensor network so and on. IEEE 802.15.3 basically has the point to point or peer to peer UM(Usage Model). But using devises that need data transmission is increasing in the house and office. Therefor UM of point to multipoint is proposed. In this paper, I proposed Multicast ACK mechanism on the point to multipoint UM. So it is able to transfer data to multiple devices as this Multicast transfer method at a time. Thus, throughput performance is improved. But the problem that increases data transfer delay is appeared because of adding Multicast ACK traffic. We compared the performance between standard and proposed mechanism through a numerical analysis.

Dynamic Channel-Time Assignments based on the link status in IEEE 802.15.3 High-rate WPAN (IEEE 802.15.3 고속 무선 PAN(Personal Area Network)에서 링크상태에 따른 동적 채널할당)

  • 곽동원;이승형
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7A
    • /
    • pp.844-851
    • /
    • 2004
  • Various types of error are caused due to many factors of various environment in air interface channel of wireless communications. In this case, the reliability of the channel is much lower than that of wired case. IEEE 802.15.3 high-rate WPAN, which operates in an ad hoc networking environment, is more susceptible to such errors. The problem has been investigated for wireless LANs, for example, as follows. If the queue size of a certain node is longer than that of other nodes, the node estimates that its channel state is bad and the resource of the node is decreased. However this method has a disadvantage that a central controller must always monitor the status. To avoid this disadvantage, in this paper, a new MAC protocol that the throughput of overall piconet is increased by LDS (Link-status Dependent Scheduling) is proposed.

Adaptive Cross-Layer Packet Scheduling Method for Multimedia Services in Wireless Personal Area Networks

  • Kim Sung-Won;Kim Byung-Seo
    • Journal of Communications and Networks
    • /
    • v.8 no.3
    • /
    • pp.297-305
    • /
    • 2006
  • High-rate wireless personal area network (HR-WPAN) has been standardized by the IEEE 802.15.3 task group (TG). To support multimedia services, the IEEE 802.15.3 TG adopts a time-slotted medium access control (MAC) protocol controlled by a central device. In the time division multiple access (TDMA)-based wireless packet networks, the packet scheduling algorithm plays a key role in quality of service (QoS) provisioning for multimedia services. In this paper, we propose an adaptive cross-layer packet scheduling method for the TDMA-based HR-WPAN. Physical channel conditions, MAC protocol, link layer status, random traffic arrival, and QoS requirement are taken into consideration by the proposed packet scheduling method. Performance evaluations are carried out through extensive simulations and significant performance enhancements are observed. Furthermore, the performance of the proposed scheme remains stable regardless of the variable system parameters such as the number of devices (DEVs) and delay bound.

An analysis of Optimal Design Conditions of Multi-mode LDPC Decoder for IEEE 802.11n WLAN System (IEEE 802.11n WLAN용 다중모드 LPDC 복호기의 최적 설계조건 분석)

  • Park, Hae-Won;Na, Young-Heon;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.432-438
    • /
    • 2011
  • This paper describes an analysis of optimal design conditions of multi-mode LDPC(low density parity check) decoder which supports three block lengths (648, 1296, 1944) and four code rates (1/2, 2/3, 3/4, 5/6) for IEEE 802.11n WLAN system. A fixed-point model of LDPC decoder, which adopts min-sum algorithm and layered decoding scheme, is implemented using Matlab. From fixed-point simulation results for various bit-width parameters such as internal bit-width, integer/fractional part bit-widths, optimal design conditions and decoding performance of LDPC decoder are analyzed.

A Study on Real Time Traffic Performance Improvement Considering QoS in IEEE 802.15.6 WBAN Environments (IEEE 802.15.6 WBAN 환경에서 QoS를 고려한 실시간 트래픽 성능향상에 관한 연구)

  • Ro, Seung-Min;Kim, Chung-Ho;Kang, Chul-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.4
    • /
    • pp.84-91
    • /
    • 2011
  • Recently, WBAN(Wireless Body Area Network) which has progressed standardization based on IEEE 802.15.6 standardization is a network for the purpose of the short-range wireless communications within around 3 meters from the inner or outer human body. Effective QoS control technique and data efficient management in limited bandwidth such as audio and video are important elements in terms of users and loads in short-range wireless networks. In this paper, for high-speed WBAN IEEE 802.15.6 standard, the dynamic allocation to give an efficient bandwidth management and weighted fair queueing algorithm have been proposed through the adjustment of the super-frame about limited data and Quality of Service (QoS) based on the queuing algorithm. Weighted Fair Queueing(WFQ) Algorithm represents the robust performance about elements to qualitative aspects as well as maintaining fairness and maximization of system performance. The performance results show that the dynamic allocation expanded transmission bandwidth five times and the weighted fair queueing increased maximum 24.3 % throughput and also resolved delay bound problem.

Performance Enhancement of IEEE 802.15.3 MAC for Simultaneously Operating Piconets

  • Peng, Xue;Peng, Gong;Kim, Duk-Kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1A
    • /
    • pp.34-43
    • /
    • 2007
  • In the IEEE 802.15.3 Medium Access Control (MAC) protocol, Simultaneously Operating Piconets (SOPs) are linked by the parent/child (P/C) or parent/neighbor (P/N) configuration, which work on a Time Division Multiple Access (TDMA) basis. This provides interference mitigation but the overall throughput is limited because the SOPs share the channel time exclusively. The protocol is not efficient for SOPs if we focus on the combination of interference mitigation and high throughput maintenance. In this paper Public Channel Time Allocation (Public CTA) is proposed, which is able to greatly reduce the inter-piconet interference (IPI) and achieve greater throughput without much loss of link success probability (LSP) in the SOPs. The simulation results based on the SOPs of Direct Sequence Ultra Wideband (DS-UWB) system demonstrate that the proposed scheme effectively supports the coexistence of SOPs, and it can not only significantly improve the overall throughput of SOPs but also maintain high LSP.

A simulator for estimating energy-consumption of the IEEE 802.15.3-based piconet. (802.15.3 piconet 에서의 에너지 소비 측정을 위한 simulator 구현)

  • Jo WonGeun;Choi Woongchul;Rhee Seung Hyong;Chung Kwangsue
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07a
    • /
    • pp.379-381
    • /
    • 2005
  • 본 논문에서는 802.15.3 piconet의 에너지 소비량을 측정하는 시뮬레이터의 구현에 대해 얘기하고자 한다. 에너지 소비를 줄이는 것은 우선 네트워크에서 가장 중요한 이슈중의 하나이다. 하지만 현재 piconet의 에너지의 소비량 또는 piconet의 생존시간물 측정해주는 simulator는 아직 나와 있지 않다. 그래서 에너지 소비를 줄이기 위한 알고리즘을 개발 하였을 때, simulator의 부재로 인해 성능의 측정이나 알고리즘의 효율성을 측정 하는 것에 어려움을 가지고 있다. 따라서 이에 관련한 simulator의 구현은 필수적인 상황이다. 본 논문에서는 piconet에서의 전체 에너지의 소비량과 에너지 소비에 따르는 piconet의 생존시간을 측정할 수 있는 simulator를 구현 하고자 한다.

  • PDF

Performance Improvement of IEEE 802.15.4 MAC For WBAN Environments in Medical (의료 WBAN 환경을 위한 IEEE 802.15.4 MAC 성능 개선)

  • Lee, Jung-Jae;Hong, Jae-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.1
    • /
    • pp.103-110
    • /
    • 2015
  • WBAN(Wireless Body Area Network) is a Wireless Sensor Network for supporting various applications around body within 2~3m which consists of medical and non-medical device. MAC in WBAN environment should satisfy requirements such as low power consumption, various transmission rate, QoS, and duty-cycle, efficiently distribute frequency band, be strong at traffic load and save energy. This paper proposes AQ(Adaptive Queuing) MAC superframe structure for efficient energy use, considering the increase of traffic load. The simulation result also show that transmission rate and average MAC delay rate is improved comparing IEEE 802.15.4 MAC with AQ MAC.

Power Consumption Analysis by Adjusting of Check Interval in Asynchronous Wireless Sensor Network (비동기 무선센서네트워크에서 체크인터벌 조절에 따른 전력소모 분석)

  • Kim, Dongwon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.91-96
    • /
    • 2019
  • There are so many low power MAC protocols for wireless sensor network. IEEE802.15.4 among them has disadvantage of a large power consumption for synchronization. To save power consumption it use the superframe operation alternating sleep mode and awake mode. But latency is longer result from superframe operation. Typical asynchronous B-MAC can have shorter latency according to check interval. But transmitter consumes more power because of long preamble. And receiver is suffering from overhearing. In this paper, we propose the adaptive check interval scheme of B-MAC for enhancing the power consumption and delay latency performance. Its power consumption is evaluated by comparing the proposed scheme with a typical IEEE802.15.4.