• Title/Summary/Keyword: 802.11v

Search Result 76, Processing Time 0.023 seconds

Scenario and Network Performance Evaluation for A Do Not Pass Warning Service Based on Vehicle-to-Vehicle Communications (차량 간 통신 기반 추월보조 서비스를 위한 시나리오 및 네트워크 성능 평가)

  • Seo, Hyun-Soo;Jung, Jin-Su;Lee, Sang-Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.3
    • /
    • pp.227-232
    • /
    • 2013
  • Due to the development of ITS technology, various services related to transportation under vehicular environments have been provided. Especially, as wireless communication technology, WAVE has been established as a standard for vehicle-to-vehicle communications. WAVE has fast connection and excellent mobility characteristics. A VSC-A project is conducting by global automotive OEMs in USDOT. This project introduces the advanced safety services with vehicle-to-vehicle communications. In this paper, we presented the scenario of a do not pass warning service, which prevents an accident during overtaking activity by using vehicle-to-vehicle communications. In addition, we analyzed network performance under WAVE. In conclusion, we introduced the simulation results. Finally, we summarized the communication range and delay values for consideration factors for a overtaking model.

The Wireless Monitoring System of Respiration Signal (호흡신호 무선 통신 시스템 개발)

  • Son, Byoung-Hee;Jang, Jong-Chan;Yang, Hyo-Sik;Cha, Eun-Jong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.3
    • /
    • pp.157-162
    • /
    • 2011
  • This study is about implementing wireless transferring system in pre-hospital cardiopulmonary resuscitation(CPR). Also, this study includes monitoring based feedback between patient and hospital to increase the survival rate of emergency patient by developing the performance of cardiopulmonary resuscitation in pre-hospital. It minimizes the loss of flow rate or gastric inflation through the space between the airway and the esophagus, which enables the inspiration-expiration rate to be measured more precisely. Due to these reasons this study applied ET insertion based respiratory sensor to measure flow rate. The main indices of artificial ventilation are justified from minute respiration(V), end-tidal $CO_2(E_TCO_2)$, and tracheal pressure($P_{tr}$). The simulation is performed to verify the bandwidth and delay time of transport network for in-hospital monitoring even as transporting images and voice information simultaneously. The total bandwidth is 815 kbps, and WLAN (IEEE 802.11x) is used as communication protocol. The network load is under 1.5% and the transmit delay time is measured under 0.3 seconds.

Low-power FFT/IFFT Processor for Wireless LAN Modem (무선 랜 모뎀용 저전력 FFT/IFFT프로세서 설계)

  • Shin Kyung-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11A
    • /
    • pp.1263-1270
    • /
    • 2004
  • A low-power 64-point FFT/IFFT processor core is designed, which is an essential block in OFDM-based wireless LAM modems. The radix-2/418 DIF (Decimation-ln-Frequency) FFT algorithm is implemented using R2SDF (Radix-2 Single-path Delay Feedback) structure. Some design techniques for low-power implementation are considered from algorithm level to circuit level. Based on the analysis on infernal data flow, some unnecessary switching activities have been eliminated to minimize power dissipation. In circuit level, constant multipliers and complex-number multiplier in data-path are designed using truncation structure to reduce gate counts and power dissipation. The 64-point FFT/IFFT core designed in Verilog-HDL has about 28,100 gates, and timing simulation results using gate-level netlist with extracted SDF data show that it can safely operate up to 50-MHz@2.5-V, resulting that a 64-point FFT/IFFT can be computed every 1.3-${\mu}\textrm{s}$. The functionality of the core was fully verified by FPGA implementation using various test vectors. The average SQNR of over 50-dB is achieved, and the average power consumption is about 69.3-mW with 50-MHz@2.5-V.

A Handover Protocol for the IEEE WAVE-based Wireless Networks (IEEE WAVE 기반의 무선 네트워크를 위한 핸드오버 프로토콜)

  • Choi, Jung-Wook;Lee, Hyuk-Joon;Choi, Yong-Hoon;Chung, Young-Uk
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.1
    • /
    • pp.76-83
    • /
    • 2011
  • The IEEE WAVE-based communication systems do not provide handover services since most of the application layer messages of a small amount containing text data that are related to safe driving. Multimedia data service such as web pages and CCTV video clips, however, require a seamless handover for continuation of a session via multiple RSUs. In this paper, we propose a new proactive handover protocol based on IEEE WAVE. According to the proposed handover protocol, the OBU notifies the old RSU of its departure from the coverage such that the old RSU forwards to the new RSU the data heading towards the OBU to be cached for the further delivery upon its entry into the new RSU's coverage. The simulation results are presented which shows the performance of the proposed protocol in terms of throughput, delivery ratio and handover delay.

Implementation of WLAN Baseband Processor Based on Space-Frequency OFDM Transmit Diversity Scheme (공간-주파수 OFDM 전송 다이버시티 기법 기반 무선 LAN 기저대역 프로세서의 구현)

  • Jung Yunho;Noh Seungpyo;Yoon Hongil;Kim Jaeseok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.5 s.335
    • /
    • pp.55-62
    • /
    • 2005
  • In this paper, we propose an efficient symbol detection algorithm for space-frequency OFDM (SF-OFDM) transmit diversity scheme and present the implementation results of the SF-OFDM WLAN baseband processor with the proposed algorithm. When the number of sub-carriers in SF-OFDM scheme is small, the interference between adjacent sub-carriers may be generated. The proposed algorithm eliminates this interference in a parallel manner and obtains a considerable performance improvement over the conventional detection algorithm. The bit error rate (BER) performance of the proposed detection algorithm is evaluated by the simulation. In the case of 2 transmit and 2 receive antennas, at $BER=10^{-4}$ the proposed algorithm obtains about 3 dB gain over the conventional detection algorithm. The packet error rate (PER), link throughput, and coverage performance of the SF-OFDM WLAN with the proposed detection algorithm are also estimated. For the target throughput at $80\%$ of the peak data rate, the SF-OFDM WLAN achieves the average SNR gain of about 5.95 dB and the average coverage gain of 3.98 meter. The SF-OFDM WLAN baseband processor with the proposed algorithm was designed in a hardware description language and synthesized to gate-level circuits using 0.18um 1.8V CMOS standard cell library. With the division-free architecture, the total logic gate count for the processor is 945K. The real-time operation is verified and evaluated using a FPGA test system.

Vehicle-to-Vehicle Broadcast Protocols Based on Wireless Multi-hop Communication (무선 멀티 홉 통신 기반의 차량간 브로드캐스트 프로토콜)

  • Han, Yong-Hyun;Lee, Hyuk-Joon;Choi, Yong-Hoon;Chung, Young-Uk
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.4
    • /
    • pp.53-64
    • /
    • 2009
  • Inter-vehicular communication that propagates information without infrastructures has drawn a lot of interest. However, it is difficult to apply conventional ad-hoc routing protocols directly in inter-vehicular communication due to frequent changes in the network topology caused by high mobility of the vehicles. MMFP(Multi-hop MAC Forwarding) is a unicast forwarding protocol that transport packets based on the reachability information instead of path selection or position information. However, delivering public safety messages informing road conditions such as collision, obstacles and fog through inter-vehicular communication requires broadcast rather than unicast since these messages contain information valuable to most drivers within a close proximity. Flooding is one of the simplest methods for multi-hop broadcast, but it suffers from reduced packet delivery-ratio and high transmission delay due to an excessive number of duplicated packets. This paper presents two multi-hop broadcast protocols for inter-vehicular communication that extend the MMFP. UMHB(Unreliable Multi-Hop Broadcast) mitigates the duplicated packets of MMFP by limiting the number of nodes to rebroadcast packets. UMHB, however, still suffers from low delivery ratio. RMHB(Reliable Multi-Hop Broadcast) uses acknowledgement and retransmission in order to improve the reliability of UMHB at the cost of increase in transmission delay, which we show through simulation is within an acceptable range for collision avoidance application.

  • PDF