• Title/Summary/Keyword: 80 MPa high-strength concrete

Search Result 148, Processing Time 0.021 seconds

Mechanical properties and adiabatic temperature rise of low heat concrete using ternary blended cement

  • Kim, Si-Jun;Yang, Keun-Hyeok;Lee, Kyung-Ho;Yi, Seong-Tae
    • Computers and Concrete
    • /
    • v.17 no.2
    • /
    • pp.271-280
    • /
    • 2016
  • This study examined the mechanical properties and adiabatic temperature rise of low-heat concrete developed based on ternary blended cement using ASTM type IV (LHC) cement, ground fly ash (GFA) and limestone powder (LSP). To enhance reactivity of fly ash, especially at an early age, the grassy membrane was scratched through the additional vibrator milling process. The targeted 28-day strength of concrete was selected to be 42 MPa for application to high-strength mass concrete including nuclear plant structures. The concrete mixes prepared were cured under the isothermal conditions of $5^{\circ}C$, $20^{\circ}C$, and $40^{\circ}C$. Most concrete specimens gained a relatively high strength exceeding 10 MPa at an early age, achieving the targeted 28-day strength. All concrete specimens had higher moduli of elasticity and rupture than the predictions using ACI 318-11 equations, regardless of the curing temperature. The peak temperature rise and the ascending rate of the adiabatic temperature curve measured from the prepared concrete mixes were lower by 12% and 32%, respectively, in average than those of the control specimen made using 80% ordinary Portland cement and 20% conventional fly ash.

A Study on the Quality Deviation of High-Strength Concrete from Multiple Ready Mixed Concrete Companies (다수 레미콘사에서 납품된 콘크리트 품질 편차에 관한 연구)

  • Park, Dong-Cheon;Seok, Won-Kyun;Jeon, Hyun-Soo;Kim, Young-Sun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.577-583
    • /
    • 2022
  • On large-scale sites, concrete is often delivered from a number of ready-mixed concrete companies, but even if the same concrete mixture table is used, it is thought that there will be a difference in quality due to differences in materials and manufacturing equipment. Due to a lack of previous research in this area, this study measured the properties of fresh concrete, compressive strength, and chlorine ion diffusion coefficient using the concrete supplied by 12 ready-mixed companies in Busan. The fresh concrete properties met the criteria. The compressive strength increased by 137% for 30MPa, 131% for 45MPa, and 117% for 80MPa by specified compressive strength. For the chlorine ion diffusion coefficient, the average value for each specified compressive strength could be derived without significant variation. The higher the compressive strength, the greater the deviation , and the lower the compressive strength, the greater the deviation in the chlorine ion diffusion coefficient.

Thermal Strain Properties of Ultra High Strength Concrete according to the Compressive Strength (압축강도에 따른 초고강도 콘크리트의 열변형 특성)

  • Yoon, Min-Ho;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Hwang, Eui-Chul;Lee, Bo-Kyeong;Seo, Won-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.24-25
    • /
    • 2016
  • In this study, the thermal strain of high strength concrete with the compressive strength of 80, 130, 180MPa were measured under 25% of compressive strength loading condition. As results, it is considered that decline of the elastic modulus and shrinkage strain of high strength concrete become grater at the elevated temperatures.

  • PDF

Field Application of 80MPa High Strength Fire Resistant Concrete using Ternary Blended Cement (설계강도 80MPa 3성분계 고강도내화콘크리트의 현장적용 및 성과분석)

  • Kim, Seong-Deok;Kim, Sang-Yun;Bae, Ki-Sun;Park, Su-Hee;Lee, Bum-Sik
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.5
    • /
    • pp.113-119
    • /
    • 2010
  • Fire resistance and field tests for high-strength concrete(HSC) of 80MPa were carried out to evaluate whether or not it shows the same material properties even in the field condition of being mass-produced and supplied. As a result, it was found that fire resistant HSCs containing composite fiber(NY, PP) of 0.075% have great resistance to fire and spalling. In the field test, before the pumping air contents, slump flow, U-box, L-flow, compressive strength, gap of hydration temperature of interior and exterior of specimen and placing ratio per hour satisfied the required properties of HSC. However, after the pumping of HSC, as slump flow and L-flow were slightly less than required criterion, they need to be improved. In terms of hydration temperature of HSC, it was found to satisfy the related criterion. Packing ability as well as placing ratio per hour of HSC, which was about $44m^3$, show outstanding results. If slump flow of developed ternary HSC is improved after the pumping it can be useful for the construction of high-rise buildings.

Tension Stiffening Effect of High-Strength Concrete in Axially Loaded Members

  • Kim, Woo;Lee, Ki-Yeol;Yum, Hwan-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.915-923
    • /
    • 2003
  • This paper presents the test results of total 35 direct tensile specimens to investigate the effect of high-strength concrete on the tension stiffening effect in axially loaded reinforced concrete tensile members. Three kinds of concrete strength 25, 60, and 80 MPa were included as a major experimental parameter together with six concrete cover thickness ratios. The results showed that as higher strength concrete was employed, not only more extensive split cracking along the reinforcement was formed, but also the transverse crack space became smaller. Thereby, the effective tensile stiffness of the high-strength concrete specimens at the stabilized cracking stage was much smaller than those of normal-strength concrete specimens. This observation is contrary to the current design provisions, and the significance in reduction of tension stiffening effect by employment of high-strength concrete is much higher than that would be expected. Based on the present results, a modification factor is proposed for accounting the effect of the cover thickness and the concrete strength.

Evaluation on Shrinkage Strain and Mechanical Properties of High Strength Concrete at Elevated Temperature (가열을 받은 고강도 콘크리트의 역학적 특성 및 수축변형 평가)

  • Yoon, Min-Ho;Kim, Gyu-Yong;Lee, Sang-Kyu;Hwang, Eui-Chul;Seo, Won-Woo;Baek, Jae-Uk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.220-221
    • /
    • 2017
  • In this study, the thermal strain of high strength concrete with the compressive strength of 70, 80, 100MPa were measured under 33% of compressive strength loading condition. As results, it is considered that shrinkage strain of high strength concrete become grater at the elevated temperatures.

  • PDF

Characteristics of the 80MPa High Strength Concrete according to the Hot Weather Outside Temperature conditions (서중 외기온도 조건에 따른 80 MPa 고강도콘크리트의 특성)

  • Jung, Yong-Wook;Lee, Seung-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.688-696
    • /
    • 2016
  • This paper evaluates the effect of hot weather conditions on the fresh concrete characteristics of 80-MPa high-strength concrete. The slump flow, packing ability, setting time, hydration heat, and compressive strength were evaluated under exterior temperatures of $20^{\circ}C$, $30^{\circ}C$, and $40^{\circ}C$. The slump flow, arrival speed of 500 mm, and their changes with the elapsed time were found to bring the occurrence of rapid slump loss forward by about 30 minutes when increasing the temperature by $10^{\circ}C$ from $20^{\circ}C$. The initial and final setting times of the concrete at $20^{\circ}C$ were 7 hours and 12 hours, which were reduced by 1 hour and 3 hours at $30^{\circ}C$ and by 2 hours and 5 hours at $40^{\circ}C$, respectively. The hydration heat characteristics at $20^{\circ}C$ and $30^{\circ}C$ were similar in terms of the highest temperature of the concrete casting depth and the time when the maximum temperature occurred. However, at $40^{\circ}C$, the maximum temperature occurred about 4 hours earlier, and the highest temperature per the concrete casting depth increased by about $12^{\circ}C$. Therefore, it is concluded that the characteristics can vary according to the exterior temperature. Thus, quality assurance should consider workability, temperature cracks due to hydration heat, the properties of strength development, and other characteristics.

A new strength model for the high-performance fiber reinforced concrete

  • Ramadoss, P.;Nagamani, K.
    • Computers and Concrete
    • /
    • v.5 no.1
    • /
    • pp.21-36
    • /
    • 2008
  • Steel fiber reinforced concrete is increasingly used day by day in various structural applications. An extensive experimentation was carried out with w/cm ratio ranging from 0.25 to 0.40, and fiber content ranging from zero to1.5 percent by volume with an aspect ratio of 80 and silica fume replacement at 5%, 10% and 15%. The influence of steel fiber content in terms of fiber reinforcing index on the compressive strength of high-performance fiber reinforced concrete (HPFRC) with strength ranging from 45 85 MPa is presented. Based on the test results, equations are proposed using statistical methods to predict 28-day strength of HPFRC effecting the fiber addition in terms of fiber reinforcing index. A strength model proposed by modifying the mix design procedure, can utilize the optimum water content and efficiency factor of pozzolan. To examine the validity of the proposed strength model, the experimental results were compared with the values predicted by the model and the absolute variation obtained was within 5 percent.

Flexural-Shear Behavior of Steel Fiber Reinforced High Strength Concrete Beams (훅트강섬유보강 고강 콘크리트 보의 휨전단 거동)

  • 한형섭;박인철;김명성;김윤일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.567-572
    • /
    • 1999
  • Experimental study was conducted to investigate the flexural-shear behavior of hooked steel fiber reinforced high strength concrete (SFRHC) beams. Twenty beams with shear span-depth ratio of 1.45 were tested, of which variables were the contents of steel fiber with aspect ratio of 60, tension reinforcement ratio and concrete compressive of 60MPa and 80MPa. Test results has shown that shear failure of the beams were changed into flexural-shear failure or flexural failure according to increasing steel fiber content, that SFRHC with slump of 15cm over and fiber volume ratio of 1.5% was possible in practice, and that proper volume ratio of steel fiber was 1.5%.

  • PDF

Stress-strain behavior and toughness of high-performance steel fiber reinforced concrete in compression

  • Ramadoss, P.;Nagamani, K.
    • Computers and Concrete
    • /
    • v.11 no.2
    • /
    • pp.149-167
    • /
    • 2013
  • The complete stress-strain behavior of steel fiber reinforced concrete in compression is needed for the analysis and design of structures. An experimental investigation was carried out to generate the complete stress-strain curve of high-performance steel fiber reinforced concrete (HPSFRC) with a strength range of 52-80 MPa. The variation in concrete strength was achieved by varying the water-to-cementitious materials ratio of 0.40-0.25 and steel fiber content (Vf = 0.5, 1.0 and 1.5% with l/d = 80 and 55) in terms of fiber reinforcing parameter, at 10% silica fume replacement. The effects of these parameters on the shape of stress-strain curves are presented. Based on the test data, a simple model is proposed to generate the complete stress-strain relationship for HPSFRC. The proposed model has been found to give good correlation with the stress-strain curves generated experimentally. Inclusion of fibers into HPC improved the ductility considerably. Equations to quantify the effect of fibers on compressive strength, strain at peak stress and toughness of concrete in terms of fiber reinforcing index are also proposed, which predicted the test data quite accurately. Compressive strength prediction model was validated with the strength data of earlier researchers with an absolute variation of 2.1%.