• Title/Summary/Keyword: 80 MPa high-strength concrete

Search Result 148, Processing Time 0.025 seconds

Flexural performance evaluation of SFRC with design strength of 60 MPa (TBM 터널 세그먼트용 60 MPa급 강섬유보강콘크리트의 휨성능 평가)

  • Moon, Do-Young;Kang, Tae-Sung;Chang, Soo-Ho;Lee, Gyu-Phil;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.175-186
    • /
    • 2013
  • Based on Model Code 2010, flexural and residual strength, flexural toughness of SFRC with design strength of 60 MPa are evaluated. For comparisons, SFRC with design strength 40 MPa was tested. Distribution of steel fibers in crack surface of specimens was evaluated by visual inspection. The used steel fibers were hooked fibers with aspect ratio of 64, 67 and 80. In all specimens, mix ratio of steel fibers was 0.5% Vol. In results, only SFRC with the highest aspect ratio satisfied requirements specified in Model Code 2010. The results demonstrated that the use of high aspect ratio will provide enough flexural toughness for high strength concrete. Also, it is found that low slump of high strength concrete can help to enhance isotropic fiber distribution.

A Convergence Study on the Reaction Injection Mold Using Ultra High Strength Concrete (초고강도 콘크리트를 이용한 반응 사출 금형에 관한 융합 연구)

  • Jaung, Jae-Dong;Kim, Hong-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.211-217
    • /
    • 2020
  • There is an increasing demands of more efficient and economical ways of mold making according to the spreading trend of small quantity batch production system. Therefore, this study aims to examine the applicability of ultra high strength concrete, which has a compressive strength over 80MPa, as a mold material. The ultra high strength concrete has several advantages such as lower cost, lighter weight and convenience of shape making compared to the traditional mold materials. Although the strength of the ultra high strength concrete is lower than that of the tool steel, it was considered to be useful for small batch processes with relatively low pressure. Therefore, in this study, a prototype mold for reaction injection molding of polyurethane was developed using ultra high strength concrete and it was examined that the possibility and characteristics of concrete as a mold material.

A Study on Mechanical Properties of High Strength Concrete Performed by Full Scaled Mock-up Test (1:1 실부재 Mock-up Test를 통한 고강도 콘크리트의 역학적 특성에 관한 연구)

  • Moon, Hyung-Jae;Seok, Won-Kyun;Park, Soon-Jeon;Lee, Joo-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.981-984
    • /
    • 2008
  • The super tall building above 100 floors is required that each floor's height is more than 4 meters, and each core wall's thickness is more than 60cm. Therefore, for the successive accomplishment of super tall building, the full scale mock-up test was required. The test results are as follows; Real strength of core wall was satisfied with design strength at 28 days regardless of types of strength, and according to the consolidation effect, lower part's strength was a little higher than upper part's strength. Lateral force of HSC was evaluated with max. $4.5ton/m^2$, and hydration temperature of mock-up test was evaluated that maximun heat of central part revealed about $80^{\circ}C$ at 70MPa and $65^{\circ}C$ at 50MPa, and, the difference between inner and outter part revealed about $30^{\circ}C$ at 70MPa and $12^{\circ}C$ at 50MPa. Also, no crack by hydration temperature was not shown on the surface.

  • PDF

Field Mock up Test of High Strength Concrete for Busan Lotte Town (부산롯데타운용 고강도 콘크리트 현장 적용을 위한 Mock-up Test)

  • Moon, Hyung-Jae;Park, Soon-Jeon;Heo, Jin-Wook;Koo, Ja-Sul;Jeong, Youn-Sung;Lee, Yang-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.223-224
    • /
    • 2009
  • This study was performed to development 80MPa high strength concrete using local raw material of Busan and to estimate field application ability. As the result of three types of mixture, fresh and hardened properties were satisfied with target requirement properties. Hydration temperature was revealed mean 75$\sim$85$\circ$C. Additionally, in case of compressive strength, core specimen's strength is six times higher than field curing specimen by very high hydration heat.

  • PDF

Capacity and Length of Compression Lap Splice in Unconfined Concrete of 100MPa and Less Compressive Strength (횡보강근이 없는 100 MPa 이하 콘크리트의 철근 압축이음 강도와 이음길이)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.659-666
    • /
    • 2010
  • Although the compression splice needs not be longer than the tension slice due to existence of end bearing, current design codes impose a longer compression lap splice than a tension lap splice in high strength concrete. Hence, new criteria for the compression lap splice including the effects of concrete strength need to be sought for economical design involving ultra-high strength concrete. An experimental study has been conducted with column specimens in concrete strength of 80 and 100 MPa. Test results show that the splice strength can be evaluated to be proportional to square root of compressive strength of concrete. Bar stress developed by end bearing is not affected by splice length and is expressed with a function of the square root of concrete strength. Mean value of stresses developed by end bearing is 16.5 square root of $f_{ck}$. The stresses developed by bond in compression splices are nearly identical to those in tension splices and, therefore, strength increment of compression splices is attributed to end bearing only. From regression analysis of 58 tests, a design equation is proposed for compression lap splice in 40 to 100 MPa of compressive strength of concrete. By the proposed equation, the anomaly of lap lengths in tension and compression is got rid of. In addition, the equation has a reliability equivalent to those of the specified strengths of materials.

An Experimental Study on the Evaluation of the Compactness of Super-High Strength Concrete for CFT structure (CFT 구조용 초고강도 콘크리트의 충전성 평가를 위한 실험적 연구)

  • Lee Jang-Hwan;Hwang Byoung-jun;Kim Je-Sub;Jung Keun-Ho;Lim Nam-Ki;Jung Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.517-520
    • /
    • 2004
  • Concrete Filled steel Tube pipe structure is a rational type of structure that maximizes performance by combining the strong points of steel frame and concrete. In the structure, the confining effect of steel pipes increases the bearing power of infilled concrete and the strengthening of local bucking of steel pipes by infilled concrete increases the bearing power of members. and these result in the reduction of cross-sectional area and high transformation capacity. Moreover. the structure is economically efficient and widely applicable that it is used from super-high buildings to residential, business and apartment buildings. It enables the construction of multi-story buildings with long spans using columns of small cross-sectional area. In case of diaphragm, however, it is difficult to confirm the compactness of the closed inside of steel pipes. The present study examined the properties of super-high strength concrete over 80MPa by comparing it with 40MPa concrete through heat conductivity and length change tests based on a mixture ratio satisfying the mixture goal presented in the guideline for the design and construction of concrete-filled steel pipe structure. and evaluated the performance of super-high strength concrete according to the shape and size of the aperture ratio of diaphragm.

  • PDF

Shrinkage and Cracking Behavior of Ultra High Strength Concrete (초고강도 콘크리트의 수축 및 균열 특성에 관한 연구)

  • Kim Ji Won;Sohn Yu Shin;Lee Joo Ha;Yoon Young Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.9-12
    • /
    • 2005
  • In this study, to investigate shrinkage and cracking behavior of 120MPa UHSC, free and restrained drying shrinkage test were performed. Three strength levels(50MPa, 80MPa, 120MPa) were used and the effect of mineral admixtures(fly ash, slag) on free and restrained shrinkage was investigated. From comparing the result of pin -penetration test with the result of ring test, Time-Zero was determined as initial set. Shrinkage test results show that autogenous shrinkage of UHSC was much higher than that of HSC, VHSC and fly ash delayed cracking age in UHSC by decreasing autogenous shrinkage. Additional free concrete rings(with restraint removed) were also tested to check the influence of the geometry of the specimens on free shrinkage. And then the relationship between free shrinkage and restrained shrinkage was investigated.

  • PDF

Study on the Fluidity and Strength Properties of High Performance Concrete Utilizing Crushed Sand

  • Park, Sangjun
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.4
    • /
    • pp.231-237
    • /
    • 2012
  • Recently, it has been difficult to get natural sand for concrete due to an insufficient supply in Korea. Crushed sand was thought as a substitute and previous research has been focused on low fluidity and normal compressive strength (24-30 MPa). Study on high performance concrete using crushed sand is hardly found in Korea. In this study it was investigated that the effect of the crushed sand on fluidity and compressive strength properties of high performance concrete. Blending crushed sand (FM: 3.98) produced in Namyangju, Kyunggido and sea sand (FM: 2.80) produced in Asan bay in Chungnam. The final FMs of fine aggregate were 3.50, 3.23, and 3.08. W/B was set as 0.25 to get high performance. With the test results an analysis of relationship was performed using a statistical program. It was shown that strength property of concrete using crushed aggregate at the very early age or after specific time was mainly affected by strength development properties of binders instead of the crushed sand.

Examination of Strain Model Constants considering Strain Properties at High Temperature of Ultra-high-strength Concrete (초고강도 콘크리트의 고온 변형 특성을 고려한 변형모델 상수 검토)

  • Hwang, Eui-Chul;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Yoon, Min-Ho;Lee, Bo-Kyeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.91-97
    • /
    • 2016
  • Evaluation on the test of actual concrete member to confirm the fire resistance of the concrete member using ultra-high strength concrete is required. However, test equipment which has large loading capacity is needed to the actual member experiment. So, many researchers evaluated the fire performance through analytical studies using the material models. This study experimentally evaluated strain properties on ultra-high-strength concrete of 80, 130 and 180 MPa with heating and examined to apply the existing strain model about ultra-high-strength concrete. As a results, constants are drawn by method of least squares applying experimental values and calculated values by the existing strain model, it proposed strain model that can be applied to ultra-high-strength concrete.

Estimating the Compressive Strength of High-Strength Concrete Using Surface Rebound Value and Ultrasonic Velocity (표면반발경도와 초음파 속도를 활용한 고강도 콘크리트 압축강도 추정)

  • Kim, Min Wook;Oh, Hongseob;Oh, Kwang Chin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.1-9
    • /
    • 2016
  • The authors performed the experimental work to propose the strength prediction equation for high strength concrete based on the non-destructive test methods. The concrete specimens that the range of design compressive strength was 40~80 MPa was produced in laboratory, and then tested rebound test and ultrasonic velocity methods and also compressive test according to the Korea Standard. The test results was compared with previously equations suggested by other researcher. From the test, these traditional nondestructive methods are simple, quick, has proven to be reliable and useful method for predicting the concrete strength. The test results were compared with the previous equations and then newly proposed own equations based on the test results. The proposed equations have the suitable precision and accuracy for applying the high strength concrete structures.