• Title/Summary/Keyword: 80 MPa high-strength concrete

Search Result 148, Processing Time 0.03 seconds

Fire Resistance of High Strength Concrete Canonical Analysis Standard for Optimal Response Condition (고강도 콘크리트 내화성능 보강인자의 최적반응조건 도출을 위한 정준분석 모델 기준)

  • Kim, Young-Hun;Lee, Mun-Hwan;Lee, Sea-Hyun;Yu, Jong-Su;Jeong, Jun-Young;Ryu, Deug-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.227-228
    • /
    • 2009
  • This study proceeded to find the optimum mixing rate of a high strength concrete with 80MPa of the contribution and composite effect on the resistance to fire of the fibers were analyzed and the corresponding results were exploited to derive practical mix proportions. Also proceeded to propriety examination of limit value for optimum operating condition.

  • PDF

Evaluation on Fatigue Performance in Compression of Normaland Light-weight Concrete Mixtures with High Volume SCM (혼화재를 다량 치환한 경량 및 보통중량 콘크리트의 압축피로 특성 평가)

  • Mun, Jae-Sung;Yang, Keun-Hyeok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.4
    • /
    • pp.354-359
    • /
    • 2014
  • The objective of this study is to examine the fatigue behavior in compression of normal-weight and lightweight concrete mixtures with high volume supplementary cementitious material(SCM). The selected binder composition was 30% ordinary portland cement, 20% fly-ash, and 50% ground granulated blast-furnace slag. The targeted compressive strength of concrete was 40 MPa. For the cyclic loading, the constant maximum stress level varied to be 75%, 80%, and 90% of the static uniaxial compressive strength, whereas the constant minimum stress level was fixed at 10% of the static strength. The test results showed that fatigue life of high volume SCM lightweight concrete was lower than the companion normalweight concrete. The value of the fatigue strain at the maximum stress level intersected the descending branch of the monotonic stress-strain curve after approximately 90% of the fatigue life.

Evaluation on Mechanical Properties of Ultra High Strength Concrete with Heating and Loading (고온가열 및 하중재하에 따른 초고강도 콘크리트의 역학적 특성 평가)

  • Kim, Min-Jung;Choe, Gyeong-Cheol;Yoon, Min-Ho;Ham, Eun-Young;Miyauchi, Hiroyuki;Kim, Gyu-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.34-35
    • /
    • 2013
  • In this study, the ultra high strength concrete which have 80, 130, 180MPa took the heat from 20℃ to 700℃ and the 0, 20% stress in normal condition's to evaluate stress-strain, residual compressive strength and thermal expansion deformation were evaluated. The heating speed of specimen was 0.77℃/min 20~50℃, 50℃ before the target temperature, and the other interval's heating speed was 1℃/min. As a result, the stress-strain curve of non-load specimen showed the liner behavior at high temperature when the specimen's strength increased more. If ultra high strength concrete got loads, its compressive strength tended to decrease different from the normal strength concrete. The thermal expansion deformation was expanded from a vitrification of quartz over 500℃. however, over the 600℃, it was shrinked because of the dehydration of the combined water.

  • PDF

A Study of Axial Eccentricity Strength of High Strength Concrete Thin Walls for Internet of Things (사물인터넷 구현을 위한 고강도 콘크리트 박막벽체의 극한 편심하중 강도에 관한 연구)

  • Oh, Soontaek;Lee, Dongjun;Kim, Yeonsik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Recently, a high strength concrete(HSC) in excess of 80 MPa is popular to use in the domestic construction field. But there is no design standard of high strength concrete. It is reason why a study about structural behaviors of thin walls is required. In this paper, the accurate Finite Element Method as a virtual test is suggested considering material properties, which are concrete and steel, and the experimental fractural model suggested by Kupfer. It is conducted the comparison evaluation of the ultimate failure loads, lateral-displacements and crack propagation patterns between the results of experimental approach, which were carried on Saheb's test for normal strength concrete and Lee's test for high strength concrete. Therefore it is suggested to use the accurate virtual simulation test method and Ubiquitous Sensor Network(USN) by Finite Element Method for Internet of Things(IoT).

Mix Design of High Strength Concrete for the High-Rise Building - The Tallest Building in the World, Burj Dubai Tower - (초고층 구조물에 적용되는 고강도 콘크리트의 배합설계 - 세계 최고층 빌딩 버즈 두바이 타원 사례 -)

  • Kim, Gyu-Dong;Lee, Seung-Hoon;Kim, Jae-Ho;Kim, Kyung-Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.445-448
    • /
    • 2006
  • Mix design of C80A which is applied to the vertical members of The Burj Dubai Tower, the tallest building of the world, was performed so as to meet the requirements of rheological property, mechanical properties & construction sequences based on material analysis in Dubai, UAE. Experimental investigations were carried out to evaluate & optimize the quantities of total binders, the proportions of Micro Silica, Dune Sand & PFA, changes of S/a and the comparison of chemical admixture, etc. Approximately $65,000m^3$ of C80A concrete has been poured to the vertical members since 16-Apr-2006. In the actual application, it was showed that C80A has proper early strength achievement, excellent mechanical properties and satisfactory flowability & workability. The results of extensive site testing can be summarized that the average compressive strength at 28days is 98.8MPa, the average elastic modulus at 28days is 47.8GPa, the flow of concrete after pumping at the height of 250m (L72) was over 500mm.

  • PDF

Behavior of high-strength fiber reinforced concrete plates under in-plane and transverse loads

  • Ramadoss, P.;Nagamani, K.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.4
    • /
    • pp.371-382
    • /
    • 2009
  • The concrete plates are most widely used structural elements in the hulls of floating concrete structures such as concrete barges and pontoons, bridge decks, basement floors and liquid storage tanks. The study on the behavior of high-strength fiber reinforced concrete (HSFRC) plates was carried out to evaluate the performance of plates under in-plane and transverse loads. The plates were tested in simply supported along all the four edges and subjected to in-plane and traverse loads. In this experimental program, twenty four 150 mm diameter cylinders and twelve plate elements of size $600{\times}600{\times}30$ mm were prepared and tested. Water-to-cementitious materials ratios of 0.3 and 0.4 with 10% and 15% silica fume replacements were used in the concrete mixes. The fiber volume fractions, $V_f$ = 0%, 1% and 1.5% with an aspect ratio of 80 were used in this study. The HSFRC mixes had the concrete compressive strengths in the range of 52.5 to 70 MPa, flexural strengths ranging from 6.21 to 11.08 MPa and static modulus of elasticity ranging from 29.68 to 36.79 GPa. In this study, the behavior of HSFRC plate elements subjected to combined uniaxial in-plane and transverse loads was investigated.

Spalling Resistance of High Strength Concrete Using Non-Stripping Form (비탈형 거푸집에 의한 고강도 콘크리트의 폭렬방지)

  • You, Ji-Young;Han, Chang-Pyung;Jee, Suk-Won;Han, Min-Cheol;Yang, Seong-Hwan;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.865-868
    • /
    • 2008
  • As a part of a series of study, this study reviewed the fire proof characteristics of high performance concrete RC column members using non-stripping form that accompanied metal lath lateral confinement to prevent spalling of high performance concrete which is increasingly used recently, and the results are as follows. Flow and air amount both satisfied target range, and compressive strength, over 80MPa at age 28 days, showed high strength range. As for spalling characteristics, in the case of plain in which no fiber is mixed, severe spalling occurred, and in the case of 0.05% nylon("NY" hereinafter)+polypropylene("PP" hereinafter) fiber mixture, only surface area experienced partial spalling. Regarding non-stripping form changes, both non-stripping 25-20 and non-stripping 50-20 experienced spalling at finish material area, and non-stripping 50-20 showed better spalling proof performance than non-stripping 25-20. In the case of non-stripping 50-40, spalling was prevented, and while mass reduction rate was less than 10%, its temperature hysteresis showed the most excellent fire proof performance with base metal surface area maximum temperature $376.1^{\circ}C$.

  • PDF

Evaluation of Carbonation and Strength of High Strength Binary Concrete Used Ground Granulated Blast Furnace Slag (고로슬래그 미분말을 사용한 2성분계 고강도 콘크리트의 강도 및 중성화 특성)

  • Kim, Hyun-Joong;Kim, Hong-Sam;Lee, Chan-Young;Cheng, Hai-Moon;Ahn, Tae-Song
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.409-412
    • /
    • 2008
  • There are many methods to improve the performance of concrete. Especially, admixture materials used in concrete as the replacement materials of cement, could fluidity, strength and durability of concrete. So recently, the terminology "High-Performance Concrete(HPC)" has been introduced into the construction industry. Most hige-performance concrete have a high cementitious content and a low water-cementitious material ratio. The proportions of the individual constituent vary depending on lacal preferences and local materials. Therefore, many trial batches are usually necessary before a successful mix is developed. The objective of this experiments is to investigate the fundamental properties of high performance concrete based binary cimentitious materials such as ordinary portland cement and ground granulated blast furnace slag. In this study, Use granulated blast furnace slag (30%, 45%, 60%) and water cementitious content (26%, 30%, 34%) take the gauge of capacity that strength, carbonation and XRD, X-Ray Diffraction test

  • PDF

Evaluation of Impact Resistance Performance of High Strength Concrete by Projectile Size and Compressive Strength (압축강도 및 비상체의 크기에 따른 고강도 콘크리트의 내충격 성능평가)

  • Kim, Hong-Sub;Kim, Gyu-Yong;Miyauchi, Hiroyukui;Nam, Jeong-Soo;Jeon, Young-Seok;Koo, Kyoung-Mo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.7-10
    • /
    • 2011
  • In this study, evaluation system of impact resistance performance is proposed. Compressive strength of concrete is 40, 60 and 80MPa. It evaluate impact resistance performance to use projectile 6, 7 and 8mm size. As a result, safety performance is more higher when the compressive strength is increased in. Compared with Hughes's formula, evaluation system of impact resistance performance is appropriated.

  • PDF

A study on the fire performance and heat transfer of the HPC column with fiber-cocktail in ISO fire under loading condition

  • Kim, Hyung-Jun;Kim, Heung-Youl;Kwon, In Kyu;Kwon, Ki-Hyuk;Min, Byung-Yeol;Cho, Bum-Yean
    • Computers and Concrete
    • /
    • v.12 no.5
    • /
    • pp.717-737
    • /
    • 2013
  • In this study, experiment and numerical analysis were conducted to identify the heat transfer characteristics and behavior of high-strength concrete upon a fire. The numerical analysis was employed to forecast the characteristics and properties of the high-strength concrete upon a fire, which can not be accomplished through a fire test due to the specific conditions and restrictions associated with the test. The result of the numerical analysis was compared with that of the test to verify the reliability of the analysis. In the numerical analysis of the heat transfer characteristics and behavior of 80 and 100 MPa high-strength concrete upon a fire, the commercial software of ABAQUS(V.6.8) was used. It was observed from the experiment that the contraction of the concrete with fiber-cocktail was mitigated by 25~55 % compared with that without fiber-cocktail because the fiber controlled the heat transfer of the concrete and thus improved the fire-resistance performance of the column.