Browse > Article
http://dx.doi.org/10.12989/cac.2013.12.5.717

A study on the fire performance and heat transfer of the HPC column with fiber-cocktail in ISO fire under loading condition  

Kim, Hyung-Jun (Fire Saftey Research Center, Korea Institute of Construction Technology)
Kim, Heung-Youl (Fire Saftey Research Center, Korea Institute of Construction Technology)
Kwon, In Kyu (Department of Fire Protection Engineering, Kangwon National University)
Kwon, Ki-Hyuk (Department of Architectural Engineering, University of Seoul)
Min, Byung-Yeol (Fire Saftey Research Center, Korea Institute of Construction Technology)
Cho, Bum-Yean (Fire Saftey Research Center, Korea Institute of Construction Technology)
Publication Information
Computers and Concrete / v.12, no.5, 2013 , pp. 717-737 More about this Journal
Abstract
In this study, experiment and numerical analysis were conducted to identify the heat transfer characteristics and behavior of high-strength concrete upon a fire. The numerical analysis was employed to forecast the characteristics and properties of the high-strength concrete upon a fire, which can not be accomplished through a fire test due to the specific conditions and restrictions associated with the test. The result of the numerical analysis was compared with that of the test to verify the reliability of the analysis. In the numerical analysis of the heat transfer characteristics and behavior of 80 and 100 MPa high-strength concrete upon a fire, the commercial software of ABAQUS(V.6.8) was used. It was observed from the experiment that the contraction of the concrete with fiber-cocktail was mitigated by 25~55 % compared with that without fiber-cocktail because the fiber controlled the heat transfer of the concrete and thus improved the fire-resistance performance of the column.
Keywords
high strength concrete; heat transfer; fire performance; fiber-cocktail; spalling;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Abaqus (2004), Theory Manual, Version 5.8, Hibbit, Karlsson & Sorensen Inc.
2 Bazant, Z.P. and Bhat, P.D. (1976), "Endochronic theory of inelasticity and failure of concrete", ASCE J. Eng. Mech., 102(4), 701-722.
3 Bazant, Z.P. and Ozbolt, J. (1990), "Non-local microplane model for fracture, damage and size effect in structures", ASCE J. Eng. Mech., 116(11), 2485-2505.   DOI
4 Bazant, Z. and Planas, J. (1998), Fracture and size effect in concrete and other quasi-brittle materials, CRC Press LLC.
5 Bazant, Z.P. and Jirasek, M. (2002), "Numerical integral formulations of plasticity and damage: survey of progress", ASCE J. Eng. Mech., 128(11), 1119-1149.   DOI   ScienceOn
6 Bobinski, J. and Tejchman, J. (2004), "Numerical simulations of localization of deformation in quasibrittle materials within non-local softening plasticity", Comput. Concrete, 1(4), 1-22.   DOI   ScienceOn
7 Bobinski, J. and Tejchman, J. (2013), "A coupled continuous-discontinuous approach to concrete elements". Proc. Int. Conf. Fracture Mechanics of Concrete and Concrete Structures FraMCoS-8 (eds.: J. G. M. van Mier, G. Ruiz, C. Andrade, R. C. Yu, X. X. Zhang).
8 Brinkgreve, R.B.J. (1994), "Geomaterial models and numerical analysis of softening", Ph.D. Thesis, Delft University of Technology, Delft.
9 Carol, I. and Willam, K. (1996), "Spurious energy dissipation/generation in stiffness recovery models for elastic degradation and damage", Int. J. Solids Struct., 33(20-22), 2939-2957.   DOI   ScienceOn
10 Cervenka, J. and Papanikolaou, V.K. (2008), "Three dimensional combined fracture-plastic material model for concrete", Int. J. Plasticity, 24(12), 2192-2220.   DOI   ScienceOn
11 Committe Euro-International du Beton, (1991), "CEB-FIP model code 1990: design code", Bulletin d'information, 213-124.
12 de Borst, R. and Nauta, P. (1985), "Non-orthogonal cracks in a smeared finite element model", Eng. Comput., 2(1), 35-46.   DOI
13 de Borst, R. (1986), "Non-linear analysis of frictional materials", Ph.D. Thesis, University of Delft, Delft.
14 de Borst, R., Pamin, J. and Geers, M. (1999), "On coupled gradient-dependent plasticity and damage theories with a view to localization analysis", Eur. J. Mech. A/Solids, 18(6), 939-962.   DOI   ScienceOn
15 Dragon, A. and Mróz, Z. (1979), "A continuum model for plastic-brittle behaviour of rock and concrete", Int. J. Eng. Sci., 17(2), 121-137.   DOI   ScienceOn
16 de Vree J.H.P., Brekelmans W.A.M. and van Gils, M.A.J. (1995), "Comparison of non-local approaches in continuum damage mechanics", Comput. Struct., 55(4), 581-588.   DOI   ScienceOn
17 den Uijl, J.A. and Bigaj, A. (1996), "A bond model for ribbed bars based on concrete confinement", Heron, 41(3), 201-226.
18 Dorr, K. (1980), Ein Beitag zur Berechnung von Stahlbetonscheiben unter Berücksichtigung des Verbundverhaltens, Phd Thesis, Darmstadt University, Darmstadt.
19 Geers, M.G.D. (1997), Experimental analysis and computational modeling of damage and fracture, PhD Thesis, Eindhoven University of Technology, Eindhoven.
20 Gitman, I.M., Askes, H. and Sluys, L.J. (2008), "Coupled-volume multi-scale modelling of quasi-brittle material", Eur. J. Mech. A/Solids, 27(3), 302-327.   DOI   ScienceOn
21 Haskett, M., Pehlers, D.J. and Mohamed Ali, M.S. (2008), "Local and global bond characteristics of steel reinforcing bars", Eng. Struct., 30(2), 376-383.   DOI   ScienceOn
22 Häuler-Combe, U. and Prochtel, P. (2005), "Ein dreiaxiale Stoffgesetz fur Betone mit normalen und hoher Festigkeit", Beton- Stahlbetonbau, 100(1), 56-62.
23 Hordijk, D.A. (1991), Local approach to fatigue of concrete, PhD Thesis, Delft University of Technology, Delft.
24 Hsieh, S.S., Ting, E.C. and Chen, W.F. (1982), "Plasticity-fracture model for concrete", Int. J. Solids Struct., 18(3), 181-187.   DOI   ScienceOn
25 Jirasek, M. (1999), "Comments on microplane theory", Mechanics of quasi-brittle materials and structures (eds.: G. Pijaudier-Cabot, Z. Bittnar and B. Gerard), Hermes Science Publications, 55-77.
26 Hughes, T.J.R. and Winget, J. (1980), "Finite Rotation Effects in Numerical Integration of Rate Constitutive Equations Arising in Large Deformation Analysis", Int. J. Numer. Methods Eng., 15(12), 1862-1867.   DOI   ScienceOn
27 Ibrahimbegovic, A., Markovic, D. and Gatuing, F. (2003), "Constitutive model of coupled damage-plasticity and its finite element implementation", Eur. J. Finite Elem., 12(4), 381-405.
28 Jirasek, M. and Zimmermann, T. (1998), "Analysis of rotating crack model", ASCE J. Eng. Mech., 124(8), 842-851.   DOI   ScienceOn
29 Jirasek, M. and Marfia, S. (2005), "Non-local damage model based on displacement averaging", Int. J. Numer. Methods Eng., 63(1), 77-102.   DOI   ScienceOn
30 Lee, J. and Fenves, G.L. (1998), "Plastic-damage model for cyclic loading of concrete structures", ASCE J. Eng. Mech., 124(8), 892-900.   DOI   ScienceOn
31 Lorrain, M., Maurel, O. and Seffo, M. (1998), "Cracking behaviour of reinforced high-strength concrete tension ties", ACI Struct. J., 95(5), 626-635.
32 Majewski, T., Bobinski, J. and Tejchman, J. (2008), "FE-analysis of failure behaviour of reinforced concrete columns under eccentric compression", Eng. Struct., 30(2), 300-317.   DOI   ScienceOn
33 Mahnken, R. and Kuhl, E. (1999), "Parameter identification of gradient enhanced damage models", Eur. J. Mech. A/Solids, 18(5), 819-835.   DOI   ScienceOn
34 Menetrey, P. and Willam, K.J. (1995), "Triaxial failure criterion for concrete and its generalization", ACI Struct. J., 92(3), 311-318.
35 Marzec, I., Bobinski, J. and Tejchman, J. (2007), "Simulations of crack spacing in reinforced concrete beams using elastic-plasticity and damage with non-local softening", Comput. Concrete, 4(5), 377-403.   DOI   ScienceOn
36 Marzec, I. and Tejchman, J. (2012), "Enhanced coupled elasto-plastic-damage models to describe concrete behaviour in cyclic laboratory tests: comparison and improvement", Arch. Mech., 64(3), 227-259.
37 Mazars, J. (1986), "A description of micro- and macroscale damage of concrete structures", Eng. Fract. Mech., 25(5-6), 729-737.   DOI   ScienceOn
38 Meschke, G. and Dumstorff, P. (2007), "Energy-based modeling of cohesive and cohesionless cracks via X-FEM", Comput. Meth. Appl. Mech. Eng., 196(21-24), 2338-2357.   DOI   ScienceOn
39 Moonen, P., Carmeliet, J. and Sluys, L.J. (2008), "A continuous-discontinuous approach to simulate fracture processes", Philos. Mag., 88(28-29), 3281-3298.   DOI   ScienceOn
40 Oliver, J. and Linero, D.L. and Huespe, A.E. and Manzoli, O.L. (2008), "Two-dimensional modeling of material failure in reinforced concrete by means of a continuum strong discontinuity approach", Comput. Meth. Appl. Mech. Eng., 197(5), 332-348.   DOI   ScienceOn
41 Ooi, E.T. and Yang, Z.J. (2011), Modelling crack propagation in reinforced concrete using a hybrid finite element-scaled boundary finite element method", Eng. Fract. Mech., 78(2), 252-273.   DOI   ScienceOn
42 Pamin, J. and de Borst, R. (1999), "Stiffness degradation in gradient-dependent coupled damage-plasticity", Arch. Mech., 51(3-4), 419-446.
43 Rabczuk, T. and Zi, G. and Bordas, S. and Nguyen-Xuan, H. (2008), "A geometrically non-linear three-dimensional cohesive crack method for reinforced concrete structures", Eng. Fract. Mech., 75(16), 4740-4758.   DOI   ScienceOn
44 Peerlings, R.H.J., de Borst, R., Brekelmans, W.A.M. and Geers, M.G.D. (1998), "Gradient enhanced damage modelling of concrete fracture", Mech. Cohes.-Frict. Mat., 3(4), 323-342.   DOI   ScienceOn
45 Pietruszczak, S., Jiang, J. and Mirza, F.A. (1988), "An elastoplastic constitutive model for concrete", Int. J. Solids Struct., 24(7), 705-722.   DOI   ScienceOn
46 Pijaudier-Cabot, G. and Bazant, Z.P. (1987), "Nonlocal damage theory", ASCE J. Eng. Mech., 113(10), 1512-1533.   DOI   ScienceOn
47 Ragueneau, F., Borderie, C.H. and Mazars, J. (2000), "Damage model for concrete-like materials coupling cracking and friction", I. J. Num. Anal. Meth. Geomech., 5(8), 607-625.
48 Rots, J. G. and Blaauwendraad, J. (1989), "Crack models for concrete, discrete or smeared? Fixed, multi-directional or rotating?", Heron, 34(1), 1-59.
49 Simo, K.C. and Ju, J.W. (1987), "Strain- and stress-based continuum damage models - I. Formulation", Int. J. Solids Struct,. 23(7), 821-840.   DOI   ScienceOn
50 Simone, A. and Sluys, L.J. (2004), "The use of displacement discontinuities in a rate-dependent medium", Comput. Meth. Appl. Mech. Eng., 193(27-29), 3015-3033.   DOI   ScienceOn
51 Skarzynski, L. and Tejchman, J. (2010), "Calculations of fracture process zones on meso-scale in notched concrete beams subjected to three-point bending", Eur. J. Mech. A/Solids, 29(4), 746-760.   DOI   ScienceOn
52 Syroka, E., Bobinski, J. and Tejchman, J. (2011), "FE analysis of reinforced concrete corbels with enhanced continuum models", Finite Elem. Anal. Des., 47(9), 1066-1078.   DOI   ScienceOn
53 Skarzynski, L, Syroka, E. and Tejchman, J. (2011), "Measurements and calculations of the width of the fracture process zones on the surface of notched concrete beams", Strain, 47(s1), 319-332.   DOI   ScienceOn
54 Sluys, L.J. and de Borst, R. (1994), "Dispersive properties of gradient and rate-dependent media", Mech. Mater., 18(2), 131-149.   DOI   ScienceOn
55 Souza, R.A. (2010), "Experimental and numerical analysis of reinforced concrete corbels strengthened with fiber reinforced polymers", Computational Modelling of Concrete Structures, (Eds. Bicanic, N., de Borst, R., Mang, H. and Meschke, G.), Taylor and Francis Group, London, 711-718.
56 Syroka-Korol, E. (2012), "Experimental and theoretical investigations of size effects in concrete and reinforced concrete beams", Ph.D. Thesis, Gdansk University of Technology, Gdansk
57 Tejchman, J. and Bobinski, J. (2013), Continuous and discontinuous modeling of fracture in concrete using FEM, Springer, (Eds. Wu, W. and Borja, R.I.), Berlin-Heidelberg, Germany.
58 Walraven, J. and Lehwalter, N. (1994), "Size effects in short beams loaded in shear", ACI Struct. J., 91(5), 585-593.