• 제목/요약/키워드: 7075 aluminum

검색결과 128건 처리시간 0.027초

Effects of NaCl Concentration and Solution Temperature on the Galvanic Corrosion between CFRP and AA7075T6

  • Hur, S.Y.;Kim, K.T.;Yoo, Y.R.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • 제19권2호
    • /
    • pp.75-81
    • /
    • 2020
  • To reduce structural weight, light metals, including aluminum and magnesium alloys, have been widely used in various industries such as aircraft, transportation and automobiles. Recently, composite materials such as Carbon Fiber Reinforced Plastics (CFRP) and Graphite Epoxy Composite Material (GECM) have also been applied. However, aluminum and its alloys suffer corrosion from various factors, which include aggressive ions, pH, solution temperature and galvanic contact by potential difference. Moreover, carbon fiber in CFRP and GECM is a very efficient cathode, and very noble in the galvanic series. Galvanic contact between carbon fiber composites and metals in electrolytes such as rain or seawater, is highly undesirable. Notwithstanding the potentially dangerous effects of chloride and temperature, there is little research on galvanic corrosion according to chloride concentration and temperature. This work focused on the effects of chloride concentration and solution temperature on AA7075T6. The increased galvanic corrosion between CRFP and AA7075T6 was evaluated by electrochemical experiments, and these effects were elucidated.

7075-T73 알루미늄 합금의 피로균열진전거동 및 지연현상에 미치는 두께의 영향 (Effect of specimen thickness on fatigue crack growth and retardation behavior of 7075-T73 aluminum alloy)

  • 김정규;박병훈;류석현
    • 대한기계학회논문집
    • /
    • 제13권4호
    • /
    • pp.670-679
    • /
    • 1989
  • 본 연구에서는 항공기 구조용 재료로서 널리 사용되는 국산 고장력 7075-T73 알류미늄 합금을 준비하고 일정진폭하중 및 단일과대하중에 의한 피로균열 진전거동에 미치는 두께의 영향과 이의 기구를 검토하였다.

알루미늄 7075 합금의 압출에서 금형 냉각이 압출재의 표면 결함에 미치는 영향 (The Effect of Die Cooling on the Surface Defects of the Aluminum 7075 Extrudates)

  • 이상용
    • 열처리공학회지
    • /
    • 제35권6호
    • /
    • pp.319-326
    • /
    • 2022
  • Direct extrusions of an aluminum 7075 alloy were carried out using 1500 ton machine with and without die cooling system. Cooling of extrusion die has been performed by the flow of liquid nitrogen and controlled by laser thermometer. Billet was 180 mm in diameter and 500 mm in length. The preheating temperatures of billet, container and die were 390℃, 400℃ and 450℃, respectively. Ram speed was kept with 1.25 mm/sec first. The change of ram speed was carried out during extrusion according to the observation of surface defects such as crack or tearing. Extrudates of 8.3 m in length, 100 mm in width and 15 mm in thickness were obtained to observe and analyze surface defects by optical microscopy and EBSD (Electron BackScattered Diffraction). In case of extrusion without die cooling cracks on the surface and tearing in the corner of extrudate occurred in the middle stage and developed in size and frequency during the late stage of extrusion. At the extrusion with die cooling the occurrence of defects could be suppressed on the most part of extrudate. EBSD micrographs showed that cracks and tearings have been resulted from the same origin. Surface defects were generated at the boundaries of grains formed by secondary recrystallization due to surface overheating during extrusion.

TiN 나노 박막을 코팅한 AL7075-T7351 알루미늄 합금의 트라이볼로지 특성에 관한 연구 (A Study on the Tribological Characteristics of AL7075-T7351 Aluminum Alloy Coated with TiN Nano Thin Film)

  • 김광수;임성훈;김도현;박형준;허선철
    • 한국산업융합학회 논문집
    • /
    • 제26권5호
    • /
    • pp.743-750
    • /
    • 2023
  • Aluminum alloy is a material widely used in the aircraft industry. However, since it has relatively low hardness, strength and tribological properties, it is necessary to improve these properties. In this paper, a TiN thin film was coated on the surface of AL7075-T7351 using DC magnetron sputtering. The coating was performed by setting different deposition pressure, deposition time, and applied power. Then, the tribological properties of the thin film were investigated. As a result of the experiment, the hardness of the thin film was higher than that of the base material, and the specimen with the highest hardness had excellent friction coefficient, wear amount, and adhesive strength characteristics. Through this study, it was confirmed that the tribological characteristics of aluminum alloy can be improved by depositing thin films using DC magnetron sputtering.

알루미늄 폼을 사용한 자동차 범퍼 빔의 설계 및 충돌해석 (Design and Impact Analysis of Automotive Bumper Beam Using Aluminum Foam)

  • 방승옥;김세환;조재웅
    • 한국산학기술학회논문지
    • /
    • 제12권4호
    • /
    • pp.1552-1558
    • /
    • 2011
  • 본 논문에서는 알루미늄 폼을 사용한 자동차 범퍼 빔을 설계하고 충돌해석을 수행하였다. 해석모델은 B형 단면 구조를 갖는 실제 크기의 범퍼 빔이다. 저속 정면충돌 시 알루미늄 범퍼 빔의 변형량 및 내부 에너지 거동을 예측할 수 있는 ANSYS AUTODYN을 이용하였다. 7075-T6 알루미늄 합금을 사용하여 철강 재질의 빔보다 55 %의 중량 감소를 얻을 수 있었으며 알루미늄 폼을 사용한 범퍼 빔의 변형량은 철강 빔과 비슷하지만 충돌에너지의 감소가 더 큰 것을 확인할 수 있었다. 또한, 알루미늄 폼의 완충보다는 50 % 충진 시 충돌에너지 흡수가 더 좋았다.

용접조건이 AI-7075-T651의 마찰교반용접부의 경도와 미세조직에 미치는 영향 (Effects of Welding Condition on Hardness and Microstructure of Friction Stir Welded Joints of AI-7075-T651 Plate)

  • 김치옥;손혜정;김선진
    • 동력기계공학회지
    • /
    • 제15권3호
    • /
    • pp.58-64
    • /
    • 2011
  • As well known, the friction stir welding is a novel welding process which is a solid state welding process for sheet or plate using the friction stir phenomenon. This paper describes the effect of welding condition such as the rotation speed and the travelling speed during the friction stir welding process on the micro Virkers hardness and the microstructure of friction stir welded joints in AI-7075-T651 plate. From those investigations, the highest hardness of stir zone was observed at the welding condition of SO-3. The microstructures of the friction stir welded joints was not dependent on the welding conditions, but in the SO-4 specimen, the friction stir welding defect like tunnel shape was found in stir zone.

7075-T73 알루미늄 합금의 단일과대 및 고-저블럭하중에 의한 지연거동과 수명예측 모델 (The Retardation Behaviors due to a Single Overload and High-Low Block Loads, and Retardation Model in 7075-T73 Aluminum Alloy)

  • 김정규;송달호;박병훈
    • 대한기계학회논문집
    • /
    • 제16권9호
    • /
    • pp.1605-1614
    • /
    • 1992
  • 본 연구에서는 고장력 7075-T73 알루미늄합금에 대하여 변동하중의 기보파형 인 단일과대하중과 고-저(high-low) 블럭하중하의 지연거동에 미치는 과대하중비 %O.L., 기준응력확대계수범위 .DELTA. $K_{b}$ 및 무차원 균열깊이 a/W의 영향을 규명하였 으며, 또한 Wheeler모델의 수정에 의한 예측피로수명을 실험치와 함께 검토하였다.다.

7075 합금의 압출에서 원소재 빌렛과 압출재의 열처리에 따른 미세조직 및 기계적 특성 분석 (Analysis of Microstructures and Mechanical Properties of Billet and Extrudate according to Heat Treatment for the Extrusion of 7075 alloy)

  • 이상용
    • 열처리공학회지
    • /
    • 제33권5호
    • /
    • pp.232-238
    • /
    • 2020
  • Heating experiments using the 7075 aluminum alloy in the state of billet and extrudate have been performed to investigate the pertinent ranges of working temperatures and holding times for the application to the various automobile parts. The 7075 specimens from raw billet of 152 mm in diameter and 400 mm in length prior to extrusion were used for heating with a holding time of 10 minutes at temperatures between 380℃ and 550℃. Then, an extrusion process using the billet has been fulfilled at 380℃ with extrusion speed of 0.8 mm/min to get an plate-type extrudate of 75 mm in width and 4.2 mm in thickness. The samples from the extrudate were subjected to heating experiments at temperatures between 380℃ and 440℃ with holding times such as 10 min, 30 min, 60 min and 120 min at each heating temperature. The microstructures were investigated on the optical and EBSD micrographs. The hardness measurement and the tensile test have been performed to investigate the effect of the heat treatment on the mechanical property. The results showed for the 7075 extrusion process that the safe heating of billet can be performed below 450℃ and the extrusion can be done safely up to 400℃.

7075 Al 합금의 파괴특성에 관한 연구 (A Study on the Fracture Characteristics of 7075 Aluminum Alloy)

  • 정태승;강인찬
    • 한국주조공학회지
    • /
    • 제12권1호
    • /
    • pp.32-39
    • /
    • 1992
  • In this study, electron microscopy, Fractography and $J_{IC}$ test have been used to investigate the fracture behaviour in the scope of aging temperature which 7075 Al-alloy can have high strength. Conclusions obtained on this study are as followed. 1) When the 7075 Al-alloy was aged for 24hrs at $120^{\circ}C$, it's mechanical properties was excellent but fracture toughness decrement resulted from intergranular fracture was emerged. 2) The state of aged for 24hrs at $100^{\circ}C$, had the highest fracture toughess. 3) We could infer that intergranular fracture occurred because preferrential precpitated precipitates in the grain boundary growed in the form of colinear along the grain boundary.

  • PDF

알루미늄 합금 7075의 용가재에 따른 GTA용접공정의 기계적 특성 평가 (Evaluation of mechanical Characteristic according to the Filler Metal by GTA welding Process using 7075 Aluminum Alloy)

  • 손영산;임병철
    • 한국산학기술학회논문지
    • /
    • 제18권4호
    • /
    • pp.521-526
    • /
    • 2017
  • 본 연구는 7075 알루미늄 합금의 용가재에 따른 GTA용접공정의 기계적 특성을 평가 하기위해 인장시험, 미세경도 시험과 같은 실험을 실시하였다. 방사선비파괴 시험 결과 KS D 0242규격의 1급의 기준에 만족하였으며 용가재에 따른 용접의 결함증가 등의 문제점은 없는 것으로 판단된다. 인장시험 결과 Al 7075를 용가재로 사용하였을 때에만 용접부에서 파단이 일어났으며 Al 7075, ER 4043의 용가재에 따른 인장강도는 각각 240MPa, 253MPa로 나타나며 항복강도는 각각 132MPa, 120MPa로 나타났으며 연신율은 각각 6.6%, 13%로 나타났다. 미세경도시험 결과 Al 7075를 용가재로 사용했을 때 용착금속부는 경화되어 Hv132로 나타났으며 ER 4043을 사용한 시편의 용착금속부의 경도는 각각 약 24% 감소하여 나타났다. Al 7075의 용접의 경우 같은 합금 조성의 용가재를 사용하여 용접 하면 용착금속부가 경화하여 용착금속부에서 파괴가 일어날 수 있으므로 같은 합금의 조성의 용가재를 사용하지 않는 것이 바람직하다. 위와 같은 실험을 통하여 7075 알루미늄합금의 용접시 같은 합금 조성의 용가재인 Al 7075를 사용하는 것 보다는 Al-Si계인 ER 4043을 용가재를 사용하는 것이 바람직하다.