• Title/Summary/Keyword: 7% ethanol

Search Result 2,781, Processing Time 0.03 seconds

Biological Activity of Extracts from Chrysanthemum incidicum Linne by Ultrafine Grinding (미세분쇄에 의한 감국(Chrysanthemum incidicum Linne) 추출물의 생리활성)

  • Cho, Young-Je
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.1
    • /
    • pp.110-117
    • /
    • 2014
  • In this study, the biological activity of water and ethanol extracts from Chrysanthemum incidicum Linne by ultrafine grinding for functional food source are examined. The content of phenolic compounds from Chrysanthemum incidicum Linne were the highest when extracted for 6 hr with 70% ethanol. The extraction yield of water and ethanol extracts were $7.12{\pm}1.61$ mg/g and $7.51{\pm}2.14$ mg/g, respectively. With ultrafine grinding, water and ethanol extracts were $8.63{\pm}1.15$ mg/g and $9.33{\pm}1.35$ mg/g, respectively. In determining anti-oxidative activity of Chrysanthemum incidicum Linne extracts, DPPH of normal grinding extracts was 83.52% and ultrafine grinding was 92.37%. In ABTS radical cation decolorization, normal grinding, fine grinding, and ultrafine grinding extracts were 90% or higher. In antioxidant protection factor (PF), water and ethanol extracts of ultrafine grinding showed relatively high anti-oxidative activities of each 1.82 PF and 2.16 PF, respectively. The TBARS value of ultrafine grinding extracts were lower than normal grinding and fine grinding extracts. The inhibition activity on xanthin oxidase of Chrysanthemum incidicum Linne extracts was 67.53% in ultrafine grinded water extracts and 83.45% in ultrafine grinded ethanol extracts. Inhibition on xanthin oxidase of ethanol extracts showed a higher inhibition effect than water extracts, and ultrafine grinding was higher than normal grinding. In angiotensin converting enzyme inhibition activity, ultrafine grinding water extract was 24% or higher, and ethanol extract was 34% or higher. The elastase inhibition activity of ultrafine grinding extract was 25.56%, which was higher than 20.34% of fine grinding extracts. Water extracts did not show hyaluronidase inhibition activity but ethanol extracts showed 35% of hyaluronidase inhibition activity. The determining expression inhibition of iNOS and COX-2 protein in macrophage by Chrysanthemum incidicum Linne extracts with a Western blot analysis, iNOS and COX-2 protein expression inhibition by Chrysanthemum incidicum Linne ethanol extracts were 40% and 15%, respectively at 100 ${\mu}g/mL$ concentration. The inhibitory patterns of iNOS and COX-2 protein expression was concentration dependent. The result suggests that Chrysanthemum incidicum Linne extracts by ultrafine grinding may be more useful than normal grinding as potential sources due to anti-oxidation, angiotensin converting enzyme and xanthine oxidase inhibition, anti-inflammation effect.

Effect of Protein and Fiber Levels on Ethanol-Induced Brain Damage in Rats

  • Cho, Soo-Yeul;Lee, Mi-Kyung;Kim, Myung-Joo
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.4
    • /
    • pp.351-355
    • /
    • 1998
  • The purpose of this study was to investigate the effect of protein and dietary fiber levels on the activities of ehanol metabilizing enzymes of the brain in acute and chronic ethanol-treated rats. Male Sprague-Dwley rats were fed on diets containing two levels of protein(7%, 20%)) with two levels of fiber(5%, 105) for 5 weeks. Rats were orally administered 40% (v/v) ethanol(5g/body weight) 90 min before decapitation in the acute ethanol-treated groups and 25% (v/v) ethanol (5g/kg body weight) once a day for 5 weeks in the chronic ethnol-treated groups. Cytosilic alcohol dehydrogenase (ADH) activities were higher than those of mitochondrial ADH. The ADH activities were increased by 20% protein and %% fiber levels in the diet in two fractions , but were decreased by chronic ethanol treatment. Mitochondrial aldehyde dehydrogenase (ALDH) activities did not change by ethanol treatment but were increased by the 20% protein level. However, cytosilic ALDH activities were decreased by chronic ethanol treatment at the 5% fiber level and did not change with protein levels. Both ALDH activities were higher in the 10% fiber groups than the 5% fiber groups. Cytochrome P-450 contents were significantly increased in the chronic ethanol-treated groups but xanthine oxidase (XO) activities did not change. P-450 contents and XO activities were significantly decreased in both the low protein and fiber groups.

  • PDF

irrE, an Exogenous Gene from Deinococcus radiodurans, Improves the Growth of and Ethanol Production by a Zymomonas mobilis Strain Under Ethanol and Acid Stresses

  • Zhang, Ying;Ma, Ruiqiang;Zhao, Zhonglin;Zhou, Zhengfu;Lu, Wei;Zhang, Wei;Chen, Ming
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.7
    • /
    • pp.1156-1162
    • /
    • 2010
  • During ethanol fermentation, bacterial strains may encounter various stresses, such as ethanol and acid shock, which adversely affect cell viability and the production of ethanol. Therefore, ethanologenic strains that tolerate abiotic stresses are highly desirable. Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation, ultraviolet light, and desiccation, and therefore constitute an important pool of extreme resistance genes. The irrE gene encodes a general switch responsible for the extreme radioresistance of D. radiodurans. Here, we present evidence that IrrE, acting as a global regulator, confers high stress tolerance to a Zymomonas mobilis strain. Expression of the gene protected Z. mobilis cells against ethanol, acid, osmotic, and thermal shocks. It also markedly improved cell viability, the expression levels and enzyme activities of pyruvate decarboxylase and alcohol dehydrogenase, and the production of ethanol under both ethanol and acid stresses. These data suggest that irrE is a potentially promising gene for improving the abiotic stress tolerance of ethanologenic bacterial strains.

Electrochemical and Biochemical Analysis of Ethanol Fermentation of Zymomonas mobilis KCCM11336

  • Jeon, Bo-Young;Hwang, Tae-Sik;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.7
    • /
    • pp.666-674
    • /
    • 2009
  • An electrochemical bioreactor (ECB) composed of a cathode compartment and an air anode was used in this study to characterize the ethanol fermentation of Zymomonas mobilis. The cathode and air anode were constructed of modified graphite felt with neutral red (NR) and a modified porous carbon plate with cellulose acetate and porous ceramic membrane, respectively. The air anode operates as a catalyst to generate protons and electrons from water. The growth and ethanol production of Z. mobilis were 50% higher in the ECB than were observed under anoxic nitrogen conditions. Ethanol production by growing cells and the crude enzyme of Z. mobilis were significantly lower under aerobic conditions than under other conditions. The growing cells and crude enzyme of Z. mobilis did not catalyze ethanol production from pyruvate and acetaldehyde. The membrane fraction of crude enzyme catalyzed ethanol production from glucose, but the soluble fraction did not. NADH was oxidized to $NAD^+$in association with $H_2O_2$reduction, via the catalysis of crude enzyme. Our results suggested that NADH/$NAD^+$balance may be a critical factor for ethanol production from glucose in the metabolism of Z. mobilis, and that the metabolic activity of both growing cells and crude enzyme for ethanol fermentation may be induced in the presence of glucose.

Continuous Ethanol Fermentation by Immobilized Kluyveromyces marxianus F043 Using Jerusalem Arichoke Powder (돼지감자 분말을 이용한 고정화 Kluyveromyces marxianus sp.의 에탄올 연속발효)

  • 신지현;최언호
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.3
    • /
    • pp.346-351
    • /
    • 1995
  • To produce ethanol from Jerusalem artichoke powder efficiently, Kluyveromyces marxianus F043 cells were encapsulated in 2% sodium alginate and were cultured in a countinuous reactor to investigate the fermentation properties. Immobilized K. marxianus F043 cells were activated for 48 hours in a fermentor for continuous ethanol production. The culture in a CSTR using a Jerusalem artichoke substrate treated with 2% cellulase showed a decrease in ethanol concentration and an increase in residual saccharide concentration with a increasing dilution rate. Optimum conditions for high ethanol productivity and low residual saccharide output were clarified to be given at a dilution rate of 0.2 h$^{-1}$ and a Jerusalem artichoke medium concentration of 75 g/l. Ethanol productivity of 3.1 g/l-h and saccharide utilization of 62.6% were obtained under the optimum condition. When the fermentation was performed for 3 weeks under these conditions, the effluent medium showed stable ethanol concentrations of 16.3 - 17.9 g/l and viable cells of 6.60-7.16 log cells/ml without contamination. Trace amounts of methyl, n-propyl, iso-butyl, isoamyl alcohols besides ethanol were detected.

  • PDF

Optimization of Ethanol Extraction Conditions from Propolis (a Bee Product) Using Response Surface Methodology (반응표면분석법을 이용한 프로폴리스의 에탄올 추출조건 최적화)

  • Kim, Seong-Ho;Kim, In-Ho;Kang, Bok-Hee;Lee, Kyung-Hee;Lee, Sang-Han;Lee, Dong-Sun;Cho, So-Mi K.;Hur, Sang-Sun;Kwon, Taeg-Kyu;Lee, Jin-Man
    • Food Science and Preservation
    • /
    • v.16 no.6
    • /
    • pp.908-914
    • /
    • 2009
  • A central composite design was used to optimize extraction of propolis materials using ethanol. The independent variables in extraction experiments were ethanol concentration (50, 60, 70, 80, 90%, v/v) and extraction time (1, 2, 3, 4, and 5 h). Higher ethanol concentration and shorter extraction time increased total polyphenol content, but total polyphenol concentration began to decrease when ethanol concentration was higher than 80% (v/v). Ethanol concentration was more important than extraction time in optimization of total polyphenol content in propolis extracts. Electron-donating ability increased with ethanol concentration and shorter extraction time, with ethanol concentration being of greater significance. Antioxidant ability in extracts was optimal at an ethanol concentration of 65 - 75% and with an extraction time of 2.2 - 3.6 h. Nitrite-scavenging ability was increased with use of higher ethanol concentration and shorter extraction time. Total flavonoid content was maximized with an ethanol concentration of 68 - 82% and an extraction time of 2.4 - 3.7 h. Total flavonoid content was affected by both ethanol concentration and extraction time. By superimposition of contour plots, an ethanol concentration of 72 - 82% and an extraction time of 2.2 - 3.3 h were optimal for preparation of propolis extracts.

In Vitro Cytotoxicity against Human Cancer Cell and 3T3-L1 Cell, Total Polyphenol Content and DPPH Radical Scavenging of Codonopsis lanceolata according to the Concentration of Ethanol Solvent

  • Boo, Hee-Ock;Park, Jeong-Hun;Lee, Moon-Soon;Kwon, Soo-Jeong;Kim, Hag-Hyun
    • Korean Journal of Plant Resources
    • /
    • v.31 no.3
    • /
    • pp.195-201
    • /
    • 2018
  • This study was executed to evaluate the phenolic content, DPPH radical scavenging rate, and the cytotoxic effect in human cancer cell, 3T3-L1 cell from C. lanceolata extracts at various ethanol concentration. Total polyphenol and flavonoid content of the C. lanceolata at various ethanol concentration showed the high amount in 70%, 100% ethanol extract. The DPPH radical scavenging activity progressively increased in a dose-dependent manner, and showed the highest in 100% ethanol extract. The cytotoxic effect against human cancer cell of the C. lanceolata was higher in 50% and 70% ethanol extracts. In particular, the cytotoxic effect in MCF-7 cell was relatively higher than in other cells. The $IC_{50}$ (concentration causing 50% cell death) value showed the highest on MCF-7 cell ($538.39{\mu}g/m{\ell}$ in 70% ethanol extract, and exhibited significant activity against Hela cell ($637.87{\mu}g/m{\ell}$, Calu-6 cell ($728.64{\mu}g/m{\ell}$. The extract of 70% ethanol at $1,000{\mu}g/m{\ell}$ exhibited a pronounced cytotoxic effect on 3T3-L1 cell comparable to that of the other extracts, and reduced in a concentration-dependent manner.

Ethanol Production from Sago Starch Using Zymomonas mobilis Coentrapped with Amyloglucosidase (동시고정화된 Amyloglucosidase와 Zymomonas mobilis를 이용한 전분으로부터의 Ethanol 생산)

  • Kim, Chul-Ho;Lee, Gyun-Min;Han, Moon-Hi;Rhee, Sang-Ki
    • Microbiology and Biotechnology Letters
    • /
    • v.15 no.6
    • /
    • pp.430-435
    • /
    • 1987
  • A chitin-immobilized enzyme amyloglucosidase(AMG) and a bacterium Zymomonas mobilis were coentrapped in alginate gel beads. Ethanol production was performed in a packed bed column reactor in a simultaneous saccharification and fermentation(SSF) mode using liquefied sago starch as a substrate. It was found that this process eliminated product inhibition and reverse reaction of glucose enhancing the rate of saccharification and ethanol production. At a low dilution rate of D = 0.11 hr$^{-1}$, the steady-state ethanol concentration was 46.0g/$m\ell$ (96.8 % of theoretical yield). The maximum ethanol productivity was 17.7g/$m\ell$, h at D = 0.83 hr$^{-1}$ when the calculation was based on the total working volume. The continuous production of ethanol was maintained stably over 40 days without problems in this reactor system.

  • PDF

Fine Granulation Characteristics of Freeze-Dried Royal Jelly (동결건조 로얄제리의 세립가공 특성)

  • Choi, In-Hag;Lee, Gee-Dong
    • Food Science and Preservation
    • /
    • v.20 no.1
    • /
    • pp.62-68
    • /
    • 2013
  • A fine granule was prepared using freeze-dried royal jelly. For its preparation, which depended on operational parameters like its glucose-to-total sugar content ratio ($X_1$,0-100%), ethanol concentration ($X_2$,75-95%) and sprayed ethanol solution content ($X_3$,8-12%) using freeze-dried royal jelly, the response surface methodology was used to monitor the optimum conditions for the yield, the fragmentation rate with shaking, and the organoleptic properties. The maximum yield was 89.99% with a glucose-to-total sugar content ratio of 59.30%, an ethanol concentration of 88.64%, and a sprayed ethanol solution content of 11.83%. The minimum fragmentation rate by shaking was 0.82% at the glucose-to-total-sugar content ratio of 22.35%, the ethanol concentration of 77.21%, and the sprayed ethanol solution content of 10.59%. The sensory score for the overall palatability of the organoleptic properties was 7.45 at the glucose-to-total-sugar content ratio of 31.81%, the ethanol concentration of 93.96%, and the sprayed ethanol solution content of 10.51%.

Effect of Casein Dephosphorylation on Stability of Casein Micelles towards Ethanol (카제인의 탈인산화가 카제인 미셀의 에탄올 안정성에 미치는 영향)

  • Shin, Weon-Sun;Moon, Tae-Wha
    • Applied Biological Chemistry
    • /
    • v.38 no.3
    • /
    • pp.254-258
    • /
    • 1995
  • Various artificial casein micelle systems were prepared from dephosphorylated whole casein, ${\beta}$- or ${\kappa}$-casein and their stabilities towards ethanol were assessed. Ethanol stability was lower in the micelle systems with dephesphorylated whole casein as compared to the artificial micelles prepared from native whole casein, and the stability decreased with the extent of dephosphorylation. The casein micelles with partially dephosphorylated ${\kappa}$-casein had a lower ethanol stability than those with native ${\kappa}$-casein. Ethanol stability of the micelle system with dephosphorylated ${\beta}$-casein decreased as the degree of dephosphorylation increased. Progressive dephosphorylation of caseins in skim milk system resulted in a decrease of the stability towards ethanol. The decrease was less than that in the system with dephosphorylated individual caseins. Increase in pH of the artificial casein micelle systems in the range of $6.3{\sim}7.2$ led to an increased ethanol stability manifesting that the presence of serine phosphates contributes significantly to the stability towards ethanol.

  • PDF