• Title/Summary/Keyword: 6H_2O$

Search Result 6,931, Processing Time 0.032 seconds

Catalytic Decomposition of $SF_6$ by Hydrolysis and Oxidation over ${\gamma}-Al_2O_3$ (${\gamma}-Al_2O_3$ 촉매상에서 가수분해와 산화반응에 의한 $SF_6$ 촉매분해 특성)

  • Lee, Sun-Hwa;Park, No-Kuk;Yoon, Suk-Hoon;Chang, Won-Chul;Lee, Tae-Jin
    • Clean Technology
    • /
    • v.15 no.4
    • /
    • pp.273-279
    • /
    • 2009
  • $SF_6$, which has a high global warming potential, can be decomposed to sulfur and fluorine compounds through hydrolysis by $H_2O$ or oxidation by $O_2$ over solid acid catalysts. In this study ${\gamma}-Al_2O_3$ was employed as the solid acid catalyst for the abatement of $SF_6$ and its catalytic activity was investigated with respect to the reaction temperature and the space velocity. The catalytic activity for $SF_6$ decomposition by the hydrolysis reached the maximum at and above 973 K with the space velocity of $20,000\;ml/g_{-cat}{\cdot}h$, exhibiting a conversion very close to 100%. When the space velocity was lower than $45,000\;ml/g_{-cat}{\cdot}h$, the conversion was maintained at the maximum value. On the other hand, the conversion of $SF_6$ by the oxidation was about 20% under the same conditions. The SEM and XRD analyses revealed that the ${\gamma}-Al_2O_3$ was transformed to ${\alpha}-Al_2O_3$ during the hydrolysis and to $AlF_3$ during the oxidation, respectively. The size of $AlF_3$ after the oxidation was over $20\;{\mu}m$, and its catalytic activity was low due to the low surface area. Therefore, it was concluded that the hydrolysis over ${\gamma}-Al_2O_3$ was much more favorable than the oxidation for the catalytic decomposition of $SF_6$.

Experimental Evidence of the Mobility of Hydroperoxyl/Superoxide Anion Radicals from the Illuminated TiO2 Interface into the Aqueous Phase

  • Kwon, Bum-Gun;Yoon, Je-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.667-670
    • /
    • 2009
  • The understanding of behaviors of hydroperoxyl/superoxide anion radicals (${H_2O_2}^./{O_2}^{-.}$) generated from a photoirradiated $TiO_2$ surface is essential to improve the efficiency of $TiO_2$ photocatalytic reactions by decreasing the recombination of photoinduced electron-hole ($e^--h^+$) pairs. In contrast with previous studies, we found that ${H_2O_2}^./{O_2}^{-.}$ generated on the surface of illuminated $TiO_2$ particles are mobile. ${H_2O_2}^./{O_2}^{-.}$ formed by the photocatalysis of $TiO_2$ particles immobilized onto the inner surface of a coil-quartz tube were forced under a continuous flow through a knotted tubing reactor (KTR) and into the aqueous phase completely separated from the $TiO_2$ particles, and were measured by a chemiluminescence (CL) technique using 2-methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazo[ 1,2-a]pyrazin-3-one (MCLA) as the reagent. The initial concentration of the ${H_2O_2}^./{O_2}^{-.}$ stream entering the KTR was determined by its half-life (98 s) at pH 5.8. We suggests that the efficiency of $TiO_2$ photocatalytic reactions may be further improved by utilizing the mobility of ${H_2O_2}^./{O_2}^{-.}$.

Hydrogen sensor using Pt-loaded porous In2O3 nanoparticle structures (백금 담지 다공성 산화인듐 나노입자 구조를 이용한 수소센서)

  • Sung Do Yun;Yoon Myung;Chan Woong Na
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.420-426
    • /
    • 2023
  • We prepared a highly sensitive hydrogen (H2) sensor based on Indium oxides (In2O3) porous nanoparticles (NPs) loaded with Platinum (Pt) nanoparticle in the range of 1.6~5.7 at.%. In2O3 NPs were fabricated by microwave irradiation method, and decorations of Pt nanoparticles were performed by electroless plating on In2O3 NPs. Crystal structures, morphologies, and chemical information on Pt-loaded In2O3 NPs were characterized by grazing-incident X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, respectively. The effect of the Pt nanoparticles on the H2-sensing performance of In2O3 NPs was investigated over a low concentration range of 5 ppm of H2 at 150-300 ℃ working temperatures. The results showed that the H2 response greatly increased with decreasing sensing temperature. The H2 response of Pt loaded porous In2O3 NPs is higher than that of pristine In2O3 NPs. H2 gas selectivity and high sensitivity was explained by the extension of the electron depletion layer and catalytic effect. Pt loaded porous In2O3 NPs sensor can be a robust manner for achieving enhanced gas selectivity and sensitivity for the detection of H2.

The Preparation for Sintered Body of $CeO_2$ Based Complex Oxide in Low Temperature Solid Oxide Fuel Cells Using Colloidal Surface Chemistry (콜로이드 계면화학을 이용한 저온형 고체전해질용 $CeO_2$계 복합 산화물의 소결체 제조)

  • 황용신;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.7
    • /
    • pp.705-712
    • /
    • 2000
  • In this study, the dispersion stability of CeO2 based complex oxide was studied, and density, porosity, and microstructure of green body were investigated using colloid surface chemistry to manufacture the Gd2O3 doped CeO2 solid electrolyte in an aqueous system. To prepare the stable slurry for slip casting, the dispersion stability was examined as a function of pH using ESA(electrokinetic sonic anplitude) analysis. The dynamic mobility of particles was enhanced with anionic and cationic dispersant were added the amount of 0.5wt% respectively, but pH value in slurries didn't move to below 6.0 because of the influence of dopants. This phenomenon also appeared in the CeO2-Y2O3 and CeO2-Sm2O3 systems, so it could be inferred that rare earth dopants such as Gd2O3, Sm2O3 and Y2O3 not only have the similar motion with changing pH in an aqueous system but also can be dissolved in the range of pH 6.0∼6.5. In CeO2-Gd2O3 system, when the anionic dispersant was added the amount of 0.5wt% and pH value in slurries was fixed at 9.5, the green body density was 4.07g/㎤, and the relative density of sintered body was 95.2%. It could be inferred from XRD analysis that Gd3+ substituted into Ce4+ site because there was no free Gd2O3 peak.

  • PDF

Novel Lanthanide Coordination Polymers Prepared by Microwave Heating: [Ln(L)3(H2O)2](H2O)3 (Ln = Eu, Tb, Gd; L = trans-(3-py)-CH=CH-COO)

  • Han, Sun-Hwa;Zheng, Zhen Nu;Cho, Sung-Il;Lee, Soon-W.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.2017-2022
    • /
    • 2012
  • Three isostructural lanthanide coordination polymers, $[Ln(L)_3(H_2O)_2](H_2O)_3$ {Ln = Eu (1), Tb (2), Gd (3); L = $trans$-3-(3-pyridyl)acrylate, (3-py)-CH=CH-COO}, were prepared from HL, lanthanide nitrate, and NaOH in $H_2O$ by microwave heating. In all coordination polymers, the metal is bonded to eight oxygen atoms, and all pyridyl nitrogen atoms do not coordinate to the metals. All polymers have a 1-D loop-connected chain structure. The hydrogen atoms in the aqua ligands and lattice water molecules all participate in the hydrogen bonds of the O-$H{\cdots}O$ or O-$H{\cdots}N$ type. The hydrogen bonds connect the 1-D chains to create a 2-D network. Polymer 1 exhibited red luminescence in the solid state at room temperature.

Theoretical Investigation for the Molecular Structures and Dimerization Energies for Complexes of H2O-C6H6 Dimer (물(H2O)과 벤젠(C6H6) 이합체의 분자 구조 및 결합 에너지에 관한 이론 연구)

  • Sun, Ju-Yong;Kim, Seung-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.1
    • /
    • pp.7-16
    • /
    • 2009
  • The global minimum structures of the benzene-water, Bz-$H_2O$ and benzene-water cation complex, [Bz-$H_2O]^+$ have been investigated using ab initio and density functional theory(DFT) with very large basis sets. The highest levels of theory employed in this study are B3LYP/cc-pVQZ for geometry optimization and MP2/aug-cc-pVTZ//B3LYP/aug-cc-pVTZ for binding energy. The harmonic vibrational frequencies and IR intensities are also determined at the various levels of theory to confirm whether the structure of water complex is affected by the presence of benzene. The binding energies of Bz-$H_2O$ (N-1) structure are predicted to be 3.92 kcal/mol ($D_e$) and 3.11 kcal/mol ($D_0$) after the zero-point vibrational energy correction at the MP2/cc-pVQZ//B3LYP/cc-pVQZ level of theory. The binding energies of [Bz-$H_2O]^+$ (C-1) structure are predicted to be 9.06 kcal/mol for $D_e$ and 7.82 kcal/mol for $D_0$ at the same level of theory.

Microbial Degradation of Polyethylene Glycol (Polyethylene Glycol의 미생물학적 분해)

  • 이종근;이상준;이재동;박송희;박재림
    • Korean Journal of Microbiology
    • /
    • v.24 no.3
    • /
    • pp.329-334
    • /
    • 1986
  • The bacteria capable of utilizing polyethylene glycol(PEG) 6,000 as a sole carbon source were isolated from soil and sewage water connected to factory area. The isolate designated as EL-033 had high biodegradability on PEG 6,000, and was identified as Micrococcus sp. Micrococcus sp. EL-033 could grow on and degrade di-, tri-, tetraethylene glycols and PEGs with molecular weight up to 6,000 and very slowly stilize PEG 20,000 as sole carbon source, but not degrade ethylene glycol. The growth rate of isolate was increased in the higher molecular weight PEGs. The optical culture medium was established to be as follow: PEG 6,000, 0.2%(w/v); $K_2HPO_4$, 0.1%; $NaH_2PO_4{\cdot}12H_2O,\;0.1%\;:\;MgSO_4{\cdot}7H_2O$, 0.05%; polypeptone, 0.1% in distilled water, pH7.5. About 90% of PEG 6,000 was degraded in exponential phase of 48h culture and PEG 6,000 was completely degraded during 72h.

  • PDF

Survey on the pH of Soils in Korea (우리나라 대표토양(代表土壤)의 반응(反應)(pH) 에 관(關)한 조사연구(調査硏究))

  • Hwang, Kyung Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.3
    • /
    • pp.153-158
    • /
    • 1973
  • This report was presented to explain the relationships between various soil pH based on the present land use, nodes of depositions, and pH measurement methods ($H_2O$ and KCl extract). The samples were collected from 160 soil series in Korea. The results were summarized as follows. 1. The average pH ($H_2O$) of surface soil were $5.3{\pm}0.6$ for paddy soils, $5.5{\pm}0.9$ for upland, $5.4{\pm}0.5$ for forest soils, $5.3{\pm}0.6$ for grassland and $5.4{\pm}0.7$ for country average. 2. The average pH (KCl) of surface soil were $4.2{\pm}0.6$ for representative soils. Paddy soils had $4.2{\pm}0.6$; upland $4.2{\pm}0.8$; forest soils, $4.0{\pm}0.6$; and grassland, $4.3{\pm}0.6$. 3. The soil pH in B and C horizons were generally higher than that of A horizons. 4. The soil pH in field were correlated with lab. soil pH ($H_2O$) and pH (KCl). Field soil pH measured by pH kit could be highly accepted in accuracy compared with lab. pH of upland, grassland, forest and paddy soils. 5. Soil pH ($H_2O$) of surface based on mode of depositions was generally higher in residuum of mountainous and hilly land than those of Fluvio-marine deposits and old alluvium, however soil pH (KCl) was higher in fiuvio-marine deposits than those of mountainous and hilly land. It was shown that soil pH (KCl) was more reasonable than that of soil pH ($H_2O$) in practical use.

  • PDF

Effect of some reagents added in culture media upon the mycelial growth of the Psallitoa Campestris (Psalliota Campestris의 균사생장(菌絲生長)에 미치는 무기염류(無機鹽類)의 영향(影響))

  • Yu, Tae-Jong
    • Applied Biological Chemistry
    • /
    • v.6
    • /
    • pp.57-59
    • /
    • 1965
  • According to the result of the observations on the effect of the reagents, $CuSO_4{\cdot}5H_2O$, $ZnSO_4{\cdot}7H_2O$ $MnSO_4{\cdot}4H_2O$, $HgCl_2$, upon the mycelial growth of psalliota campestris $HgCl_2$ showed the strongest effect on checking the mycelial growth $(,.008{\sim}0.01%)$ $CuSO_4{\cdot}5H_2O(0.030%)$, $ZnSO_4{\cdot}7H_2O(0.080%)$, came next and the $MnSO_4{\cdot}4H_2O(0.100%)$ was the weakest. Writer also found that showed the promoting effect of the mycelial growth in appropriate Concentration (at $0.015%\;CuSO_4{\cdot}5H_2O$, $0.030%ZnSO_4{\cdot}7H_2O$).

  • PDF

The Effect of Melatonin on Mitochondrial Function in Endotoxemia Induced by Lipopolysaccharide

  • Liu, Jing;Wu, Fengming;Liu, Yuqing;Zhang, Tao;Tang, Zhaoxin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.6
    • /
    • pp.857-866
    • /
    • 2011
  • This study examined the metabolism of free radicals in hepatic mitochondria of goats induced by lipopolysaccharide (LPS), and investigated the effects of melatonin (MT). Forty-eight healthy goats ($10{\pm}1.2\;kg$) were randomly selected and divided into four groups: saline control, LPS, MT+LPS and MT. The goats within each group were3 sacrificed either 3 or 6 h after treatment and the livers removed to isolate mitochondria. The respiration control ratio (RCR), the ADP:O ratio, the oxidative phosphorylation ratio (OPR), the concentration of $H_2O_2$ and the activities of Complex I-IV were determined. The mitochondrial membrane potential ($\Delta\psi_m$) was analyzed by flow cytometry. The results showed that RCR, O/P and OPR of the LPS group decreased (p<0.05), as well as activities of respiratory complexes, whereas the generation of $H_2O_2$ in Complex III increased (p<0.05) after 3 h, while Complex II and III increased after 6 h. Also, it was found that the mitochondrial membrane potential of the LPS group declined (p<0.05). However, pre-treatment with MT attenuated the injury induced by LPS, which not only presented higher (p<0.05) RCR, O/P, OPR, and respiratory complex activities, but also maintained the $\Delta\psi_m$. Interestingly, it is revealed that, in the MT+LPS group, the generation of $H_2O_2$ increased firstly in 3 h, and then significantly (p<0.05).decreased after 6 h. In the MT group, the function of mitochondria, the transmenbrane potential and the generation of $H_2O_2$ were obviously improved compared to the control group. Conclusion: melatonin prevents damage caused by LPS on hepatic mitochondria of goats.