• Title/Summary/Keyword: 6DOF

Search Result 601, Processing Time 0.027 seconds

Implementation of Flight Simulator using 6DOF Motion Platform

  • Park, Myeong-Chul;Choi, Duk-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.8
    • /
    • pp.17-23
    • /
    • 2018
  • In this paper, we implemented a flight posture simulator that intuitively understands aircraft flight posture and visualizes the principle of motion. The proposed system operates the 6 - axis motion platform according to the change of the navigation information and transmits the flight attitude to the simulator using the gyro sensor. A gyro sensor and an acceleration sensor are used together to analyze the attitude of the aircraft. The reason is that the gyro sensor has a cumulative error in the integration process. And the accelerometer sensor was compensated by using the complementary filter because noise was serious due to short term vibration. Using the compensated sensor information, the motion platform is operated by calculating the angle to be transmitted to the 6-axis motor. And visualization result is implemented using OpenGL. The results of this study can be used as teaching materials for students related to aviation in the future.

Design and Modeling of a 6-dof Stage for Ultra-Precision Positioning (초정밀 구동을 위한 6 자유도 스테이지의 설계와 모델링)

  • Moon, Jun-Hee;Park, Jong-Ho;Pahk, Heui-Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.106-113
    • /
    • 2009
  • A 6-DOF precision stage was developed based on parallel kinematics structure with flexure hinges to eliminate backlash, stick-slip and friction and to minimize parasitic motion coupled with motions in the other-axis directions. For the stage, lever linkage mechanism was devised to reduce the height of system for the enhancement of horizontal stiffness. Frequency response comparison between experimental results and mathematical model extracted from dynamics of the stage was performed to identify the system parameters such as spring constants and damping coefficients of actuation modules, which cannot be calculated accurately by analytic methods owing to their complicated structures. This newly developed precision stage and its identified model will be very useful for precision positioning and control because of its high accuracy and non-coupled movement.

Design and Performance Evaluation of Controller for Unstable Motion of Underwater Vehicle after Water Entry (수중운동체 입수 초기의 불안정 거동에 대한 제어기 설계 및 성능평가)

  • Park, Yeong-Il;Ryu, Dong-Ki;Kim, Sam-Soo;Lee, Man-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.166-175
    • /
    • 1999
  • This paper describes a design and performance evaluation of robust controller which overrides unstable motion and pulls out quickly after water entry of underwater vehicle dropped from aircraft or surface ship. We use 6-DOF equation for model of motions and assume parameter uncertainty to reflect the difference of real motion from modelled motion equation. we represent a nonlinear system with uncertainty as Takagi and Sugeno's(T-S) fuzzy models and design controller stabilizing them. The fuzzy controller utilizes the concept of so-called parallel distributed compensation (PDC). Finally, we confirm stability and performance of the controller through computer simulation and hardware in the loop simulation (HILS).

  • PDF

6 - DOF Trajectory M&S of Spin - stabilized Munitions using Matlab Simulink (Matlab Simulink를 이용한 회전안정탄의 6 자유도 탄도 모델링)

  • Kim, Ki Pyo;Yun, Sang Yong;Kim, Jin Seuk;Hong, Jong Tai
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.39-44
    • /
    • 2006
  • With the advent of low cost, miniature and high-g hardened inertial sensors and actuators, many kind of smart munitions are becoming practical such as 1D or 2D TCM, SFM, Range Extended GPS guided munitions and so on. They have more complicated trajectory control algorithm than conventional munitions'. Therefore it is necessary to study the complicated operation algorithm of smart munitions with M&S in advance of developing them. The purpose of this paper is to introduce a practical M&S method to study an operation concept of smart munitions using PRODAS and Matlab.

  • PDF

Design of Beacon System for Estim ating 6DOF and Central Management Based on the Convolutional Neural Network in an augmented reality environment (증강현실 환경에서 합성곱 신경망 기반 6 자유도 자세 추정 및 중앙 관리가 가능한 비콘 시스템 설계)

  • An, Hyeon Woo;Cho, Jae Hyeon;Moon, Nammee
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.178-179
    • /
    • 2018
  • 증강현실 환경에서 현실 세계의 물체를 포착하여 디지털화 시키는 것은 몰입감 향상에 있어 매우 중요한 기술이다. Faster R - CNN 은 영상에서 여러 물체를 인식하는 기술 중 하나이며, 지금껏 많은 응용 기술의 개발과 함께 많은 연구가 진행되고 있다. 본 논문은 증강현실 환경에서 평면물체의 2D 변환관계를 설명하는 Homography 와 Faster R - CNN 을 활용하여 여러 개의 비콘에 대한 6 자유도(6DOF) 를 추정하는 방법을 제안한다. 또한 증강현실에서 주로 사용되는 마커 기술에 존재하는 단점들을 극복할 수 있는 비콘 구조를 소개하고 여러 개의 비콘을 용이하게 관리하는 시스템을 제안한다.

  • PDF

Analysis of an Elastic Boom Effect on the Dynamic Response of a Cargo (중량물의 동적 거동에 미치는 크레인 붐(boom)의 탄성 영향 분석)

  • Park, Kwang-Phil;Cha, Ju-Hwan;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.421-429
    • /
    • 2010
  • In this paper, in order to analyze the dynamic response of a floating crane when it lifts a heavy cargo, the boom of the floating crane is considered as an elastic beam. The boom is divided into elements based on finite element formulation and the floating frame of reference formulation and nodal coordinates are employed to model the boom as a flexible body. As an extension of the previous study, in order to consider spatial motion in waves, the coupled equations of motions of the 6 degree of freedom (DOF) floating crane and 6 DOF cargo are developed based on the flexible multibody system dynamics. The 3 dimensional deformation of the elastic boom is considered with 18 DOF. The dynamic simulation of the floating crane and the cargo is performed under regular wave conditions with various cargo weights. Finally, the effects of the elastic boom on lifting cargo are discussed by comparing the simulation results between the elastic boom and a rigid boom.

Analysis of Parallel Mechanisms with Forward Position Closed-Form Solution with Application to Hybrid Manipulator (정위치 해석해를 가지는 병렬 메카니즘에 관한 분석과 혼합구조 매니퓰레이터로의 활용)

  • 김희국;이병주
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.324-337
    • /
    • 1999
  • In this work, a new 3-PSP type spatial 3-degree-of-freedom parallel mechanism is proposed. And a 6 DOF hybrid manipulator which consists of a 3-PPR type planar 3 DOF parallel mechanism and a new 3-PSP type spatial 3-degree-of-freedom parallel mechanism is proposed. Both 3 DOF mechanism modules have closed-form forward position solutions and particularly, 3-PSP spatial module has unique forward position solution. Firstly, the closed-form position analysis and first-order kinematic analysis for the proposed 3-PSP type module are carried out, and the first-order kinematic characteristics are examined via maximum singular value and the isotropic index of the mechanism. It is shown through these analyses that the mechanism has excellent isotrpic property throughout the workspace. Secondly, position and kinematic analysis of the 3-PPR planar module are briefly described. Thirdly, the forward position analysis for the 3-PPR 3-PSP type 6 degree-of-freedom hybrid mechanism consisting of a 3-PPR planar module and a 3-PSP spatial module is performed along with the analysis of the workspace size and first-order kinematic characteristics. The kinematic characteristics of the proposed hybrid manipulator are compared to those of geometrically similar Stewart manipulator.

  • PDF

Visual Servoing-Based Paired Structured Light Robot System for Estimation of 6-DOF Structural Displacement (구조물의 6자유도 변위 측정을 위한 비주얼 서보잉 기반 양립형 구조 광 로봇 시스템)

  • Jeon, Hae-Min;Bang, Yu-Seok;Kim, Han-Geun;Myung, Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.989-994
    • /
    • 2011
  • This study aims to demonstrate the feasibility of a visual servoing-based paired structured light (SL) robot for estimating structural displacement under various external loads. The former paired SL robot, which was proposed in the previous study, was composed of two screens facing with each other, each with one or two lasers and a camera. It was found that the paired SL robot could estimate the translational and rotational displacement each in 3-DOF with high accuracy and low cost. However, the measurable range is fairly limited due to the limited screen size. In this paper, therefore, a visual servoing-based 2-DOF manipulator which controls the pose of lasers is introduced. By controlling the positions of the projected laser points to be on the screen, the proposed robot can estimate the displacement regardless of the screen size. We performed various simulations and experimental tests to verify the performance of the newly proposed robot. The results show that the proposed system overcomes the range limitation of the former system and it can be utilized to accurately estimate the structural displacement.

Impedance Control of Flexible Base Mobile Manipulator Using Singular Perturbation Method and Sliding Mode Control Law

  • Salehi, Mahdi;Vossoughi, Gholamreza
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.677-688
    • /
    • 2008
  • In this paper, the general problem of impedance control for a robotic manipulator with a moving flexible base is addressed. Impedance control imposes a relation between force and displacement at the contact point with the environment. The concept of impedance control of flexible base mobile manipulator is rather new and is being considered for first time using singular perturbation and new sliding mode control methods by authors. Initially slow and fast dynamics of robot are decoupled using singular perturbation method. Slow dynamics represents the dynamics of the manipulator with rigid base. Fast dynamics is the equivalent effect of the flexibility in the base. Then, using sliding mode control method, an impedance control law is derived for the slow dynamics. The asymptotic stability of the overall system is guaranteed using a combined control law comprising the impedance control law and a feedback control law for the fast dynamics. As first time, base flexibility was analyzed accurately in this paper for flexible base moving manipulator (FBMM). General dynamic decoupling, whole system stability guarantee and new composed robust control method were proposed. This proposed Sliding Mode Impedance Control Method (SMIC) was simulated for two FBMM models. First model is a simple FBMM composed of a 2 DOFs planar manipulator and a single DOF moving base with flexibility in between. Second FBMM model is a complete advanced 10 DOF FBMM composed of a 4 DOF manipulator and a 6 DOF moving base with flexibility. This controller provides desired position/force control accurately with satisfactory damped vibrations especially at the point of contact. This is the first time that SMIC was addressed for FBMM.

A Study on a 4WS Vehicle Using Fuzzy Logic and Model Following Control (퍼지로직과 모델추종제어를 이용한 4륜 조향 차량에 관한 연구)

  • Baek, Seung-Ju;Oh, Chae-Youn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.931-942
    • /
    • 1999
  • This paper develops a 3 DOF vehicle model which includes lateral, roll and yaw motion to study a 4WS vehicle. The model is used for the simulation of a 4WS vehicle behavior, and to derive a control algorithm for rear wheel steering. This paper uses a feedforward plus feedback control scheme to compute a rear wheel steering angle. The feedforward control scheme for computing the first rear wheel steering angle uses a gain which is acquired by multiplying a proper value on a gain to maintain a zero sideslip angle. The feedback control scheme for computing the second rear wheel steering angle uses fuzzy logic and model following control scheme. A linear 2 DOF model is used as a reference model for model following control, and is derived from the developed 3 DOF model by neglecting sprung mass roll motion. A reference state variable is yaw rate, and is computed using the linear 2 DOF model. J-turn and lane change maneuver simulation are performed to show the effectiveness of the developed control scheme. The simulation results show that the 4WS vehicle with the developed control scheme has much better performance in yaw rate, lateral acceleration, roll angle, and sideslip angle than the 2WS vehicle. Also, the results show that the performance of the developed control is close to the one of an optimal control which assumes all states are perfect.