• Title/Summary/Keyword: 6D pose estimation

Search Result 23, Processing Time 0.026 seconds

Predicting Unseen Object Pose with an Adaptive Depth Estimator (적응형 깊이 추정기를 이용한 미지 물체의 자세 예측)

  • Sungho, Song;Incheol, Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.12
    • /
    • pp.509-516
    • /
    • 2022
  • Accurate pose prediction of objects in 3D space is an important visual recognition technique widely used in many applications such as scene understanding in both indoor and outdoor environments, robotic object manipulation, autonomous driving, and augmented reality. Most previous works for object pose estimation have the limitation that they require an exact 3D CAD model for each object. Unlike such previous works, this paper proposes a novel neural network model that can predict the poses of unknown objects based on only their RGB color images without the corresponding 3D CAD models. The proposed model can obtain depth maps required for unknown object pose prediction by using an adaptive depth estimator, AdaBins,. In this paper, we evaluate the usefulness and the performance of the proposed model through experiments using benchmark datasets.

Object Pose Estimation and Motion Planning for Service Automation System (서비스 자동화 시스템을 위한 물체 자세 인식 및 동작 계획)

  • Youngwoo Kwon;Dongyoung Lee;Hosun Kang;Jiwook Choi;Inho Lee
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.2
    • /
    • pp.176-187
    • /
    • 2024
  • Recently, automated solutions using collaborative robots have been emerging in various industries. Their primary functions include Pick & Place, Peg in the Hole, fastening and assembly, welding, and more, which are being utilized and researched in various fields. The application of these robots varies depending on the characteristics of the grippers attached to the end of the collaborative robots. To grasp a variety of objects, a gripper with a high degree of freedom is required. In this paper, we propose a service automation system using a multi-degree-of-freedom gripper, collaborative robots, and vision sensors. Assuming various products are placed at a checkout counter, we use three cameras to recognize the objects, estimate their pose, and create grasping points for grasping. The grasping points are grasped by the multi-degree-of-freedom gripper, and experiments are conducted to recognize barcodes, a key task in service automation. To recognize objects, we used a CNN (Convolutional Neural Network) based algorithm and point cloud to estimate the object's 6D pose. Using the recognized object's 6d pose information, we create grasping points for the multi-degree-of-freedom gripper and perform re-grasping in a direction that facilitates barcode scanning. The experiment was conducted with four selected objects, progressing through identification, 6D pose estimation, and grasping, recording the success and failure of barcode recognition to prove the effectiveness of the proposed system.

Robot Posture Estimation Using Circular Image of Inner-Pipe (원형관로 영상을 이용한 관로주행 로봇의 자세 추정)

  • Yoon, Ji-Sup;Kang , E-Sok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.6
    • /
    • pp.258-266
    • /
    • 2002
  • This paper proposes the methodology of the image processing algorithm that estimates the pose of the inner-pipe crawling robot. The inner-pipe crawling robot is usually equipped with a lighting device and a camera on its head for monitoring and inspection purpose of defects on the pipe wall and/or the maintenance operation. The proposed methodology is using these devices without introducing the extra sensors and is based on the fact that the position and the intensity of the reflected light from the inner wall of the pipe vary with the robot posture and the camera. The proposed algorithm is divided into two parts, estimating the translation and rotation angle of the camera, followed by the actual pose estimation of the robot . Based on the fact that the vanishing point of the reflected light moves into the opposite direction from the camera rotation, the camera rotation angle can be estimated. And, based on the fact that the most bright parts of the reflected light moves into the same direction with the camera translation, the camera position most bright parts of the reflected light moves into the same direction with the camera translation, the camera position can be obtained. To investigate the performance of the algorithm, the algorithm is applied to a sewage maintenance robot.

Multi-View 3D Human Pose Estimation Based on Transformer (트랜스포머 기반의 다중 시점 3차원 인체자세추정)

  • Seoung Wook Choi;Jin Young Lee;Gye Young Kim
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.48-56
    • /
    • 2023
  • The technology of Three-dimensional human posture estimation is used in sports, motion recognition, and special effects of video media. Among various methods for this, multi-view 3D human pose estimation is essential for precise estimation even in complex real-world environments. But Existing models for multi-view 3D human posture estimation have the disadvantage of high order of time complexity as they use 3D feature maps. This paper proposes a method to extend an existing monocular viewpoint multi-frame model based on Transformer with lower time complexity to 3D human posture estimation for multi-viewpoints. To expand to multi-viewpoints our proposed method first generates an 8-dimensional joint coordinate that connects 2-dimensional joint coordinates for 17 joints at 4-vieiwpoints acquired using the 2-dimensional human posture detector, CPN(Cascaded Pyramid Network). This paper then converts them into 17×32 data with patch embedding, and enters the data into a transformer model, finally. Consequently, the MLP(Multi-Layer Perceptron) block that outputs the 3D-human posture simultaneously updates the 3D human posture estimation for 4-viewpoints at every iteration. Compared to Zheng[5]'s method the number of model parameters of the proposed method was 48.9%, MPJPE(Mean Per Joint Position Error) was reduced by 20.6 mm (43.8%) and the average learning time per epoch was more than 20 times faster.

  • PDF

Design of Robust Face Recognition System Realized with the Aid of Automatic Pose Estimation-based Classification and Preprocessing Networks Structure

  • Kim, Eun-Hu;Kim, Bong-Youn;Oh, Sung-Kwun;Kim, Jin-Yul
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2388-2398
    • /
    • 2017
  • In this study, we propose a robust face recognition system to pose variations based on automatic pose estimation. Radial basis function neural network is applied as one of the functional components of the overall face recognition system. The proposed system consists of preprocessing and recognition modules to provide a solution to pose variation and high-dimensional pattern recognition problems. In the preprocessing part, principal component analysis (PCA) and 2-dimensional 2-directional PCA ($(2D)^2$ PCA) are applied. These functional modules are useful in reducing dimensionality of the feature space. The proposed RBFNNs architecture consists of three functional modules such as condition, conclusion and inference phase realized in terms of fuzzy "if-then" rules. In the condition phase of fuzzy rules, the input space is partitioned with the use of fuzzy clustering realized by the Fuzzy C-Means (FCM) algorithm. In conclusion phase of rules, the connections (weights) are realized through four types of polynomials such as constant, linear, quadratic and modified quadratic. The coefficients of the RBFNNs model are obtained by fuzzy inference method constituting the inference phase of fuzzy rules. The essential design parameters (such as the number of nodes, and fuzzification coefficient) of the networks are optimized with the aid of Particle Swarm Optimization (PSO). Experimental results completed on standard face database -Honda/UCSD, Cambridge Head pose, and IC&CI databases demonstrate the effectiveness and efficiency of face recognition system compared with other studies.

Registration System of 3D Footwear data by Foot Movements (발의 움직임 추적에 의한 3차원 신발모델 정합 시스템)

  • Jung, Da-Un;Seo, Yung-Ho;Choi, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.6
    • /
    • pp.24-34
    • /
    • 2007
  • Application systems that easy to access a information have been developed by IT growth and a human life variation. In this paper, we propose a application system to register a 3D footwear model using a monocular camera. In General, a human motion analysis research to body movement. However, this system research a new method to use a foot movement. This paper present a system process and show experiment results. For projection to 2D foot plane from 3D shoe model data, we construct processes that a foot tracking, a projection expression and pose estimation process. This system divide from a 2D image analysis and a 3D pose estimation. First, for a foot tracking, we propose a method that find fixing point by a foot characteristic, and propose a geometric expression to relate 2D coordinate and 3D coordinate to use a monocular camera without a camera calibration. We make a application system, and measure distance error. Then, we confirmed a registration very well.

A Method for Body Keypoint Localization based on Object Detection using the RGB-D information (RGB-D 정보를 이용한 객체 탐지 기반의 신체 키포인트 검출 방법)

  • Park, Seohee;Chun, Junchul
    • Journal of Internet Computing and Services
    • /
    • v.18 no.6
    • /
    • pp.85-92
    • /
    • 2017
  • Recently, in the field of video surveillance, a Deep Learning based learning method has been applied to a method of detecting a moving person in a video and analyzing the behavior of a detected person. The human activity recognition, which is one of the fields this intelligent image analysis technology, detects the object and goes through the process of detecting the body keypoint to recognize the behavior of the detected object. In this paper, we propose a method for Body Keypoint Localization based on Object Detection using RGB-D information. First, the moving object is segmented and detected from the background using color information and depth information generated by the two cameras. The input image generated by rescaling the detected object region using RGB-D information is applied to Convolutional Pose Machines for one person's pose estimation. CPM are used to generate Belief Maps for 14 body parts per person and to detect body keypoints based on Belief Maps. This method provides an accurate region for objects to detect keypoints an can be extended from single Body Keypoint Localization to multiple Body Keypoint Localization through the integration of individual Body Keypoint Localization. In the future, it is possible to generate a model for human pose estimation using the detected keypoints and contribute to the field of human activity recognition.

AI-Based Object Recognition Research for Augmented Reality Character Implementation (증강현실 캐릭터 구현을 위한 AI기반 객체인식 연구)

  • Seok-Hwan Lee;Jung-Keum Lee;Hyun Sim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1321-1330
    • /
    • 2023
  • This study attempts to address the problem of 3D pose estimation for multiple human objects through a single image generated during the character development process that can be used in augmented reality. In the existing top-down method, all objects in the image are first detected, and then each is reconstructed independently. The problem is that inconsistent results may occur due to overlap or depth order mismatch between the reconstructed objects. The goal of this study is to solve these problems and develop a single network that provides consistent 3D reconstruction of all humans in a scene. Integrating a human body model based on the SMPL parametric system into a top-down framework became an important choice. Through this, two types of collision loss based on distance field and loss that considers depth order were introduced. The first loss prevents overlap between reconstructed people, and the second loss adjusts the depth ordering of people to render occlusion inference and annotated instance segmentation consistently. This method allows depth information to be provided to the network without explicit 3D annotation of the image. Experimental results show that this study's methodology performs better than existing methods on standard 3D pose benchmarks, and the proposed losses enable more consistent reconstruction from natural images.

Efficient Intermediate Joint Estimation using the UKF based on the Numerical Inverse Kinematics (수치적인 역운동학 기반 UKF를 이용한 효율적인 중간 관절 추정)

  • Seo, Yung-Ho;Lee, Jun-Sung;Lee, Chil-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.39-47
    • /
    • 2010
  • A research of image-based articulated pose estimation has some problems such as detection of human feature, precise pose estimation, and real-time performance. In particular, various methods are currently presented for recovering many joints of human body. We propose the novel numerical inverse kinematics improved with the UKF(unscented Kalman filter) in order to estimate the human pose in real-time. An existing numerical inverse kinematics is required many iterations for solving the optimal estimation and has some problems such as the singularity of jacobian matrix and a local minima. To solve these problems, we combine the UKF as a tool for optimal state estimation with the numerical inverse kinematics. Combining the solution of the numerical inverse kinematics with the sampling based UKF provides the stability and rapid convergence to optimal estimate. In order to estimate the human pose, we extract the interesting human body using both background subtraction and skin color detection algorithm. We localize its 3D position with the camera geometry. Next, through we use the UKF based numerical inverse kinematics, we generate the intermediate joints that are not detect from the images. Proposed method complements the defect of numerical inverse kinematics such as a computational complexity and an accuracy of estimation.

UV Mapping Based Pose Estimation of Furniture Parts in Assembly Manuals (UV-map 기반의 신경망 학습을 이용한 조립 설명서에서의 부품의 자세 추정)

  • Kang, Isaac;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.667-670
    • /
    • 2020
  • 최근에는 증강현실, 로봇공학 등의 분야에서 객체의 위치 검출 이외에도, 객체의 자세에 대한 추정이 요구되고 있다. 객체의 자세 정보가 포함된 데이터셋은 위치 정보만 포함된 데이터셋에 비하여 상대적으로 매우 적기 때문에 인공 신경망 구조를 활용하기 어려운 측면이 있으나, 최근에 들어서는 기계학습 기반의 자세 추정 알고리즘들이 여럿 등장하고 있다. 본 논문에서는 이 가운데 Dense 6d Pose Object detector (DPOD) [11]의 구조를 기반으로 하여 가구의 조립 설명서에 그려진 가구 부품들의 자세를 추정하고자 한다. DPOD [11]는 입력으로 RGB 영상을 받으며, 해당 영상에서 자세를 추정하고자 하는 객체의 영역에 해당하는 픽셀들을 추정하고, 객체의 영역에 해당되는 각 픽셀에서 해당 객체의 3D 모델의 UV map 값을 추정한다. 이렇게 픽셀 개수만큼의 2D - 3D 대응이 생성된 이후에는, RANSAC과 PnP 알고리즘을 통해 RGB 영상에서의 객체와 객체의 3D 모델 간의 변환 관계 행렬이 구해지게 된다. 본 논문에서는 사전에 정해진 24개의 자세 후보들을 기반으로 가구 부품의 3D 모델을 2D에 투영한 RGB 영상들로 인공 신경망을 학습하였으며, 평가 시에는 실제 조립 설명서에서의 가구 부품의 자세를 추정하였다. 실험 결과 IKEA의 Stefan 의자 조립 설명서에 대하여 100%의 ADD score를 얻었으며, 추정 자세가 자세 후보군 중 정답 자세에 가장 근접한 경우를 정답으로 평가했을 때 100%의 정답률을 얻었다. 제안하는 신경망을 사용하였을 때, 가구 조립 설명서에서 가구 부품의 위치를 찾는 객체 검출기(object detection network)와, 각 개체의 종류를 구분하는 객체 리트리벌 네트워크(retrieval network)를 함께 사용하여 최종적으로 가구 부품의 자세를 추정할 수 있다.

  • PDF