• Title/Summary/Keyword: 64-bits

Search Result 85, Processing Time 0.023 seconds

The 64-Bit Scrambler Design of the OFDM Modulation for Vehicles Communications Technology (차량 통신 기술을 위한 OFDM 모듈레이션의 64-비트 스크램블러 설계)

  • Lee, Dae-Sik
    • Journal of Internet Computing and Services
    • /
    • v.14 no.1
    • /
    • pp.15-22
    • /
    • 2013
  • WAVE(Wireless Access for Vehicular Environment) is new concepts and Vehicles communications technology using for ITS(Intelligent Transportation Systems) service by IEEE standard 802.11p. Also it increases the efficiency and safety of the traffic on the road. However, the efficiency of Scrambler bit computational algorithms of OFDM modulation in WAVE systems will fall as it is not able to process in parallel in terms of hardware and software. This paper proposes an algorithm to configure 64-bits matrix table in scambler bit computation as well as an algorithm to compute 64-bits matrix table and input data in parallel. The proposed algorithm on this thesis is executed using 64-bits matrix table. In the result, the processing speed for 1 and 1000 times is improved about 40.08% ~ 40.27% and processing rate per sec is performed more than 468.35 compared to bit operation scramble. And processing speed for 1 and 1000 times is improved about 7.53% ~ 7.84% and processing rate per sec is performed more than 91.44 compared to 32-bits operation scramble. Therefore, if the 64 bit-CPU is used for 64-bits executable scramble algorithm, it is improved more than 40% compare to 32-bits scrambler.

Design and Implementation of 64 QAM(155Mbps) Demodulator for Transmitting Digital Microwave Radio (Digital Microwave Radio 신호전송을 위한 64QAM(155Mbps) 복조기 설계 및 구현)

  • 방효창;안준배;이대영;조성준;김원후
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.11
    • /
    • pp.2081-2093
    • /
    • 1994
  • In this study, we design and implement 64 QAM demodulator which has 155 Mbps, first level of CCITT G707 SDH(Synchronous Digital Hierachy) for STM 1 signal transmission. Carrier recovery which effects the demodulator performance uses decision feedback carrier using 8 bits A/D converter. Also, PSF(Pulse Shaping Filter) is 7 order elliptic filter. Carrier recovery circuit is designed and implemented digital type which use high 3 bits of 8 bits conversion data as data and the order low bits as error data and hybrid type which use VCO and analog integrator. Therefore we obtain stable performance recovery.

  • PDF

Design and Implementation of a Home Networking base on IPv6 using telephone number (IPv6 기반 전화번호를 이용한 홈 네트워킹 설계 및 구현)

  • 장영재;나상준;이병호
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.137-140
    • /
    • 2003
  • IPv6 that is next generation internet was appeared because of the shortage of IPv4 address. In present, there has been studying about the home networking which allocates IPv6 address to home appliances. In this paper, It makes 16bits unicast address using remainder 4bits after making 124bits address using 64bits prefix address of IPv6 and 60bits having the form of E.164 proposed RFC2916, IETF and implemented and designed the home networking communicating home appliances having unique unicast address

  • PDF

Related-Key Differential Attacks on CHESS-64

  • Luo, Wei;Guo, Jiansheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3266-3285
    • /
    • 2014
  • With limited computing and storage resources, many network applications of encryption algorithms require low power devices and fast computing components. CHESS-64 is designed by employing simple key scheduling and Data-Dependent operations (DDO) as main cryptographic components. Hardware performance for Field Programmable Gate Arrays (FPGA) and for Application Specific Integrated Circuits (ASIC) proves that CHESS-64 is a very flexible and powerful new cipher. In this paper, the security of CHESS-64 block cipher under related-key differential cryptanalysis is studied. Based on the differential properties of DDOs, we construct two types of related-key differential characteristics with one-bit difference in the master key. To recover 74 bits key, two key recovery algorithms are proposed based on the two types of related-key differential characteristics, and the corresponding data complexity is about $2^{42.9}$ chosen-plaintexts, computing complexity is about $2^{42.9}$ CHESS-64 encryptions, storage complexity is about $2^{26.6}$ bits of storage resources. To break the cipher, an exhaustive attack is implemented to recover the rest 54 bits key. These works demonstrate an effective and general way to attack DDO-based ciphers.

Integral Attacks on Some Lightweight Block Ciphers

  • Zhu, Shiqiang;Wang, Gaoli;He, Yu;Qian, Haifeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4502-4521
    • /
    • 2020
  • At EUROCRYPT 2015, Todo proposed a new technique named division property, and it is a powerful technique to find integral distinguishers. The original division property is also named word-based division property. Later, Todo and Morii once again proposed a new technique named the bit-based division property at FSE 2016 and find more rounds integral distinguisher for SIMON-32. There are two basic approaches currently being adopted in researches under the bit-based division property. One is conventional bit-based division property (CBDP), the other is bit-based division property using three-subset (BDPT). Particularly, BDPT is more powerful than CBDP. In this paper, we use Boolean Satisfiability Problem (SAT)-aided cryptanalysis to search integral distinguishers. We conduct experiments on SIMON-32/-48/-64/-96, SIMON (102)-32/-48/-64, SIMECK-32/-48/-64, LBlock, GIFT and Khudra to prove the efficiency of our method. For SIMON (102)-32/-48/-64, we can determine some bits are odd, while these bits can only be determined as constant in the previous result. For GIFT, more balanced (zero-sum) bits can be found. For LBlock, we can find some other new integral distinguishers. For Khudra, we obtain two 9-round integral distinguishers. For other ciphers, we can find the same integral distinguishers as before.

Floating Point Converter Design Supporting Double/Single Precision of IEEE754 (IEEE754 단정도 배정도를 지원하는 부동 소수점 변환기 설계)

  • Park, Sang-Su;Kim, Hyun-Pil;Lee, Yong-Surk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.10
    • /
    • pp.72-81
    • /
    • 2011
  • In this paper, we proposed and designed a novel floating point converter which supports single and double precisions of IEEE754 standard. The proposed convertor supports conversions between floating point number single/double precision and signed fixed point number(32bits/64bits) as well as conversions between signed integer(32bits/64bits) and floating point number single/double precision and conversions between floating point number single and double precisions. We defined a new internal format to convert various input types into one type so that overflow checking could be conducted easily according to range of output types. The internal format is similar to the extended format of floating point double precision defined in IEEE754 2008 standard. This standard specifies that minimum exponent bit-width of the extended format of floating point double precision is 15bits, but 11bits are enough to implement the proposed converting unit. Also, we optimized rounding stage of the convertor unit so that we could make it possible to operate rounding and represent correct negative numbers using an incrementer instead an adder. We designed single cycle data path and 5 cycles data path. After describing the HDL model for two data paths of the convertor, we synthesized them with TSMC 180nm technology library using Synopsys design compiler. Cell area of synthesis result occupies 12,886 gates(2 input NAND gate), and maximum operating frequency is 411MHz.

Efficient Signal Reordering Unit Implementation for FFT (FFT를 위한 효율적인 Signal Reordering Unit 구현)

  • Yang, Seung-Won;Lee, Jang-Yeol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1241-1245
    • /
    • 2009
  • As FFT(Fast Fourier Transform) processor is used in OFDM(Orthogonal Frequency Division Multiplesing) system. According to increase requirement about mobility and broadband, Research about low power and low area FFT processor is needed. So research concern in reduction of memory size and complex multiplier is in progress. Increasing points of FFT increase memory area of FFT processor. Specially, SRU(Signal Reordering Unit) has the most memory in FFT processor. In this paper, we propose a reduced method of memory size of SRU in FFT processor. SRU of 64, 1024 point FFT processor performed implementation by VerilogHDL coding and it verified by simulation. We select the APEX20KE family EP20k1000EPC672-3 device of Altera Corps. SRU implementation is performed by synthesis of Quartus Tool. The bits of data size decide by 24bits that is 12bits from real, imaginary number respectively. It is shown that, the proposed SRU of 64point and 1024point achieve more than 28%, 24% area reduction respectively.

Design and Implementation of a Fast DIO(Digital I/O) System (고속 DIO(Digital I/O) 시스템의 설계와 제작)

  • Lee, Jong-Woon;Cho, Gyu-Sang
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.5
    • /
    • pp.229-235
    • /
    • 2006
  • High speed PC-based DIO(Digital I/O) system that consists of a master device and slave I/O devices is developed. The PCI interfaced master device controls all of serial communications, reducing the load on the CPU to a minimum. The slave device is connected from the master device and another slave device is connected to the slave device, it can repeated to maximum 64 slave devices. The slave device has 3 types I/O mode, such as 16 bits input-only, 16 bits output-only, and 8bits input-output. The master device has 2 rings which can take 64 slaves each. Therefore, total I/O points covered by the master is 2048 points. The slave features 3 types of input/output function interchangeability by DIP switch settings. Library, application, and device driver software for the DIO system that have a secure and a convenient functionality are developed.

Data Hiding in NTFS Timestamps for Anti-Forensics

  • Cho, Gyu-Sang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.8 no.3
    • /
    • pp.31-40
    • /
    • 2016
  • In this paper, we propose a new anti-forensic method for hiding data in the timestamp of a file in the Windows NTFS filesystem. The main idea of the proposed method is to utilize the 16 least significant bits of the 64 bits in the timestamps. The 64-bit timestamp format represents a number of 100-nanosecond intervals, which are small enough to appear in less than a second, and are not commonly displayed with full precision in the Windows Explorer window or the file browsers of forensic tools. This allows them to be manipulated for other purposes. Every file has $STANDARD_INFORMATION and $FILE_NAME attributes, and each attribute has four timestamps respectively, so we can use 16 bytes to hide data. Without any changes in an original timestamp of "year-month-day hour:min:sec" format, we intentionally put manipulated data into the 16 least significant bits, making the existence of the hidden data in the timestamps difficult to uncover or detect. We demonstrated the applicability and feasibility of the proposed method with a test case.

Prevention Scheme of DDoS Attack in Mobile WiMAX Networks Using Shared Authentication Information (Mobile WiMAX 네트워크에서 공유 인증 정보를 이용한 분산 서비스 거부 공격 방어)

  • Kim, Young-Wook;Bahk, Sae-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2B
    • /
    • pp.162-169
    • /
    • 2009
  • Message Authentication Code (MAC) assures integrity of messages. In Mobile WiMAX, 128-bit Cipher-based MAC (CMAC) is calculated for management messages but only the least significant half is actually used truncating the most significant 64 bits. Naming these unused most significant 64bits Shared Authentication Information (SAI), we suggest that SAI can be applied to protect the network from DDoS attack which exploits idle mode vulnerabilities. Since SAI is the unused half of CMAC, it is as secure as 64bits of CMAC and no additional calculations are needed to obtain it. Moreover, SAI doesn't have to be exchanged through air interface and shared only among MS, BS, and ASN Gateway. With these good properties, SAI can efficiently reduce the overheads of BS and ASN GW under the DDoS attack.