• Title/Summary/Keyword: 6-axis acceleration Sensor

Search Result 27, Processing Time 0.026 seconds

Kalman Filter for Estimation of Sensor Acceleration Using Six-axis Inertial Sensor (6축 관성센서를 이용한 센서가속도 추정용 칼만필터)

  • Lee, Jung Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.2
    • /
    • pp.179-185
    • /
    • 2015
  • Although an accelerometer is a sensor that measures acceleration, it cannot be used by itself to measure the acceleration when the orientation of the sensor changes. This paper introduces a Kalman filter for the estimation of a sensor acceleration based on a six-axis inertial sensor (i.e., a three-axis accelerometer and three-axis gyroscope). The novelty of the proposed Kalman filter lies in the fact that its state vector includes not only the tilt angle variable but also the sensor acceleration. Thus, the filter can explicitly estimate the latter with a high accuracy. The accuracy of acceleration estimates were validated experimentally under three different dynamic conditions, using an optical motion capture system. It could be concluded that the performance of the proposed Kalman filter was comparable to that of the state-of-the-art estimation algorithm employed by the Xsens MTw. The proposed algorithm may be more suitable than inertial/magnetic sensor-based algorithms for various applications adopting six-axis inertial sensors.

Flexure Error Analysis of RLG based INS (링레이저 자이로 관성항법시스템의 편향 오차 해석)

  • Kim Kwang-Jin;Yu Myeong-Jong;Park Chan-Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.608-613
    • /
    • 2006
  • Any input acceleration that bends RLG dithering axis causes flexure error, which is a source of the noncommutative error that can not be compensated by simply using integrated gyro sensor output. This paper introduces noncommutative error equations that define attitude errors caused by flexure errors. In this paper, flexure error is classified as sensor level error if the sensing axis coincides with the dithering axis and as system level error if the two axes do not coincide. The relationship between gyro output and the rotation vector is introduced and is used to define the coordinate transformation matrix and angular motion. Equations are derived for both sensor level and system level flexure error analysis. These equations show that RLG based INS attitude error caused by flexure is directly proportional to time, amount of input acceleration and the dynamic frequency of the vehicle.

A Study of Simple Sleep Apnea Predictive Device Using SpO2 and Acceleration Sensor

  • Woo, Seong-In;Lee, Merry;Yeom, Hojun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.71-75
    • /
    • 2019
  • Sleep apnea is a disease that causes various complications, and the polysomnography is expensive and difficult to measure. The purpose of this study is to develop an unrestricted wearable monitoring system so that patients can be examined in a familiar environment. We used a method to detect sleep apnea events and to determine sleep satisfaction by non-constrained method using SpO2 measurement sensor and 3-axis acceleration sensor. Heart rate and SpO2 were measured at the finger using max30100. After acquiring the SpO2 data of the user in real time, the apnea measurement algorithm was used to transmit the number of apnea events of the user to the mobile phone using Bluetooth (HC-06) on the wrist. Using the three-axis acceleration sensor (mpu6050) attached to the upper body, the number of times of tossing and turning during sleep was measured. Based on this data, this algorithm evaluates the patient's tossing and turning during sleep and transmits the data to the mobile phone via Bluetooth. The power source used 9 volts battery to operate Arduino UNO and sensors for portability and stability, and the data received from each sensor can be used to check the various degree between sleep apnea and sleep tossing and turning on the mobile phone. Through thisstudy, we have developed a wearable sleep apnea measurement system that can be easily used at home for the problem of low sleep efficiency of sleep apnea patients.

Implementation of Flight Simulator using 6DOF Motion Platform

  • Park, Myeong-Chul;Choi, Duk-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.8
    • /
    • pp.17-23
    • /
    • 2018
  • In this paper, we implemented a flight posture simulator that intuitively understands aircraft flight posture and visualizes the principle of motion. The proposed system operates the 6 - axis motion platform according to the change of the navigation information and transmits the flight attitude to the simulator using the gyro sensor. A gyro sensor and an acceleration sensor are used together to analyze the attitude of the aircraft. The reason is that the gyro sensor has a cumulative error in the integration process. And the accelerometer sensor was compensated by using the complementary filter because noise was serious due to short term vibration. Using the compensated sensor information, the motion platform is operated by calculating the angle to be transmitted to the 6-axis motor. And visualization result is implemented using OpenGL. The results of this study can be used as teaching materials for students related to aviation in the future.

Posture and activity monitoring using a 3-axis accelerometer (3축 가속도 센서를 이용한 자세 및 활동 모니터링)

  • Jeong, Do-Un;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.467-474
    • /
    • 2007
  • The real-time monitoring about the activity of the human provides useful information about the activity quantity and ability. The present study implemented a small-size and low-power acceleration monitoring system for convenient monitoring of activity quantity and recognition of emergent situations such as falling during daily life. For the wireless transmission of acceleration sensor signal, we developed a wireless transmission system based on a wireless sensor network. In addition, we developed a program for storing and monitoring wirelessly transmitted signals on PC in real-time. The performance of the implemented system was evaluated by assessing the output characteristic of the system according to the change of posture, and parameters and acontext recognition algorithm were developed in order to monitor activity volume during daily life and to recognize emergent situations such as falling. In particular, recognition error in the sudden change of acceleration was minimized by the application of a falling correction algorithm

Detection of Rotation in Jump Rope using 6-axis Accelerometer Gyro Sensor (6축 가속도 자이로 센서를 이용한 줄넘기 회전운동 검출)

  • Kim, Wanwoo;Heo, Gyeongyong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.285-293
    • /
    • 2017
  • Jump rope has two motions. It starts as hand motion and ends as jump motion. Therefore, two motions should be considered together to detect rotations accurately. But previous researches only consider one of the two motions as in push-up, sit-up, lift dumbbells etc, which results in inaccurate detection of rotations. In this paper, detection of rotation in jump rope using two motions through 6-axis accelerometer gyro sensor is proposed. Jump motion is detected using accelerometer sensor and hand motion is detected using gyro sensor. Also start point and end point of jump rope is detected using magnitude and standard deviation of accelerometer and gyro sensor values. The count of rotation is detected using y-axis of gyro sensor value. Y-axis of gyro sensor value indicate hand motion of jump rope motion. The usefulness of the proposed method is confirmed through experimental results.

A study on the design of an accident prevention system using an acceleration sensor (가속도 센서를 이용한 사고방지 시스템 설계에 관한 연구)

  • Shin, Jin-Seob;Lee, Yun-Min
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.135-140
    • /
    • 2021
  • In this paper is a study on system design to prevent accidents using accelerometers. A switching power FET was configured at the power supply stage, and DC-DC converter, a regulator, and an LDO were designed for the power supply. In order to solve the power problem at once, it was divided into two parts, and a 3-axis accelerometer was designed to extract motion information to safely prevent accidents. Microprocessor enables communication through I2C and UART communication ports, and enables debugging through J-LINK. As a result of measuring the acceleration sensor data, it was confirmed that the power is normally cut off to prevent accidents when motion at an angle of 30° or more is detected.

Abnormal Step Recognition for Pedestrian Danger Recognition (보행자의 위험인지를 위한 비정상 걸음인식)

  • Ryu, Chang-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.1233-1242
    • /
    • 2017
  • Various attempts have been made to prevent crime risk. One of the cases where outdoor pedestrians are attacked by criminals is the abnormal health condition. When a mental or mental condition that can not sustain normal walking due to drunkenness is exposed, the case of being a crime is revealed through crime case analysis. In this study, we propose a method for estimating the state of an individual that can be detected in outdoor activities. In order to avoid the inconvenience of installing a separate terminal for event information transmission of sensors and sensors, it is possible to estimate an abnormal state by using a 3-axis acceleration sensor built in a smart phone. The state of the user can be estimated by analyzing the momentum of the user and analyzing it with the passage of time. It is possible to distinguish the flow of time at regular intervals, to recognize the activity patterns in each time band, and to distinguish between normal and abnormal. In this study, we have evaluated the total amount of kinetic energy and kinetic energy in each direction of the acceleration sensor and the Fourier transformed value of the total energy amount to distinguish the abnormal state.

A Study of Baby Sleeping Positions Sensing and Safety Band Using an Accelerometer (가속도 센서를 이용한 아기 수면자세 감지 및 안전 밴드에 관한 연구)

  • Yoon, Ji-Min;Lim, Chae-Young;Kim, Kyung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.6
    • /
    • pp.11-18
    • /
    • 2010
  • In this paper, it introduced the device that was fabricated for monitoring sleeping positions of infants with 3-axis accelerometer. Sleep monitoring studies has been usually conducted two ways. To monitor sleeping posture by installing a camera and then recording of sleep in the sleeping room continuously is the first one. The other one is monitoring pressure sensor's results data for sleeping. Those two ways' benefits are that are able to get relatively accurate sleeping posture data but, there are many disadvantages like constraints of spaces and places, the installation of sensors or cameras, and high cost. In addition, it has a lot of problems that difficult to solve. For babies, it's not easy to apply, as well as uncomfortable. The proposed method uses a 3-axis accelerometer's X axis, Y axis, Z axis position output values in order to recognize the bad ground sleeping position that use of the buzzer alarm. This method uses a 3-axis acceleration sensor to measure the data and transmit sleeping posture using Bluetooth wireless in real time monitoring. The data is helpful for prevention safety hazard such as choked themselves when they slept back side on.

A Two-step Kalman/Complementary Filter for Estimation of Vertical Position Using an IMU-Barometer System (IMU-바로미터 기반의 수직변위 추정용 이단계 칼만/상보 필터)

  • Lee, Jung Keun
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.202-207
    • /
    • 2016
  • Estimation of vertical position is critical in applications of sports science and fall detection and also controls of unmanned aerial vehicles and motor boats. Due to low accuracy of GPS(global positioning system) in the vertical direction, the integration of IMU(inertial measurement unit) with the GPS is not suitable for the vertical position estimation. This paper investigates an IMU-barometer integration for estimation of vertical position (as well as vertical velocity). In particular, a new two-step Kalman/complementary filter is proposed for accurate and efficient estimation using 6-axis IMU and barometer signals. The two-step filter is composed of (i) a Kalman filter that estimates vertical acceleration via tilt orientation of the sensor using the IMU signals and (ii) a complementary filter that estimates vertical position using the barometer signal and the vertical acceleration from the first step. The estimation performance was evaluated against a reference optical motion capture system. In the experimental results, the averaged estimation error of the proposed method was 19.7 cm while that of the raw barometer signal was 43.4 cm.