• 제목/요약/키워드: 6 DOF simulation

검색결과 199건 처리시간 0.024초

수중모함에서 사출되는 고속 수중운동체의 초기 거동 모델링 및 시뮬레이션 (Modeling and Simulation for the Initial Dynamics of a High Speed Underwater Vehicle Ejected from a Submerged Mother Ship)

  • 윤현규;조현진
    • 한국군사과학기술학회지
    • /
    • 제19권2호
    • /
    • pp.227-235
    • /
    • 2016
  • Heavy-weight high speed underwater vehicle(HSUV) is launched from the submerged mother ship. For the safety point of view, it is important to confirm whether the HSUV would touch the launching mother ship. In this paper, the hydrodynamic force and moment were modeled by the polynomials of motion variables and the simple lift and drag acting on a plate and cylinder which consist of the HSUV's several parts. The mother ship was assumed as the Rankine half body to consider the flow field near the moving ship. Such hydrodynamic force and moment were included in the 6 DOF equations of motion of the HSUV and the dynamic simulations for the various conditions of the HSUV until the propeller activation were performed. Developed simulation program is expected to reduce the number of expensive sea trial test to develop safety logic of the HSUV at the initial firing stage.

센서 오차를 고려한 기뢰제거용 무인잠수정의 유도방법 (A Study on Guidance Methods of Mine Disposal Vehicle Considering the Sensor Errors)

  • 변승우;김동희;임종빈;한종훈;박도현
    • 대한임베디드공학회논문지
    • /
    • 제12권5호
    • /
    • pp.277-286
    • /
    • 2017
  • This paper introduces mathematical modelling and control algorithm of expendable mine disposal vehicle. This vehicle has two longitudinal thrusters, one vertical thruster and internal mass moving system which can control pitch rate. Also, the vehicle has an optical camera and forward looking sonar for underwater mine detection and classification. The vehicle is controlled via an optical cable connected with operating console on the mother ship. We describe the vehicle's 6DOF dynamic model and controller which can track the desired trajectory for the way-point tracking. These simulation results shows guidance and maneuvering performance which has other sensor data or not.

Development of a Simulator of a Magnetic Suspension and Balance System

  • Lee, Dong-Kyu;Lee, Jun-Seong;Han, Jae-Hung;Kawamura, Yoshiyuki;Chung, Sang-Joon
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권3호
    • /
    • pp.175-183
    • /
    • 2010
  • The increased demand for a higher performing magnetic suspension and balance system (MSBS) resulted in an increase in costs for the efforts necessary for achieving an improved MSBS. Therefore, MSBS performance should be predicted during the design in order to reduce risk. This paper presents the modeling and simulation of an MSBS that controls 6-degree of freedom (DOF) of an aerodynamic body within the MSBS. Permanent magnets and electromagnets were modeled as coils, and this assumption was verified by experimental results. Finally, an MSBS simulator was developed, predicting that the MSBS is able to contain the model within a bounded region as well as measure external forces acting on the body during wind tunnel tests.

자유날개 동체꺾임형 항공기의 조종성 해석 (Free-wing Tilt-body Aircraft Controllerability Analysis)

  • 박욱제
    • 한국항공운항학회지
    • /
    • 제19권1호
    • /
    • pp.1-6
    • /
    • 2011
  • The free-wing tilt-body aircraft is researched in the flight performance characteristics such as short take-off and landing capability, and reduced sensitivity to gust and center of gravity (CG) change. Due to the main wing separating from the fuselage, the high tiltable empennage, and the stub-wing strongly influencing from the propeller wake, the resulting vehicle aerodynamics and flight dynamics are quite different from those of a conventional fixed-wing aircraft. Using the governing flight dynamics model was studied previously, all of speed and body tilt angle is simulated to determine the flight envelope by a non-linear 3-DOF flight simulation analysis. Though flight performance and trimmability are studied, the flight model of free-wing tilt-body aircraft is to reduce the hidden risk and to achieve the successful flight test. It is analyzed the flight characteristics that distinguishes free-wing tilt-body aircraft from the conventional aircraft.

Development and Performance Verification of Real-time Hybrid Navigation System for Autonomous Underwater Vehicles

  • Kim, Hyun Ki;Jung, Woo Chae;Kim, Jeong Won;Nam, Chang Woo
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제5권2호
    • /
    • pp.97-107
    • /
    • 2016
  • Military Autonomous Underwater Vehicle (AUV) is utilized to search a mine under the sea. This paper presents design and performance verification of real-time hybrid navigation system for AUV. The navigation system uses Doppler Velocity Log (DVL) integration method to correct INS error in underwater. When the AUV is floated on the water, the accumulated error of navigation algorithm is corrected using position/velocity of GPS. The navigation algorithm is verified using 6 Degree Of Freedom (DOF) simulation, Program In the Loop Simulation (PILS). Finally, the experiments are performed in real sea environment to prove the reliability of real-time hybrid navigation algorithm.

신경회로망 기반 미사일 적응제어기의 모델 불확실 상황에 대한 시뮬레이션 연구 (Simulation Analysis of the Neural Network Based Missile Adaptive Control with Respect to the Model Uncertainty)

  • 성재민;김병수
    • 제어로봇시스템학회논문지
    • /
    • 제16권4호
    • /
    • pp.329-334
    • /
    • 2010
  • This paper presents the design of a neural network based adaptive control for missile. Acceleration of missile by tail fin control cannot be controllable by DMI (Dynamic Model Inversion) directly because it is non-minimum phase system. To avoid the non-minimum phase system, dynamic model inversion is applied with output-redefinition method. In order to evaluate performance of the suggested controllers we selected the three cases such as control surface fail, control surface loss and wing loss for model uncertainty. The corresponding aerodynamic databases to the failure cases were calculated by using the Missile DATACOM. Using a high fidelity 6DOF simulation program of the missile the performance was evaluates.

자기부상열차-가이드웨이 통합 시스템의 동적 특성 (Dynamic Response of Coupled Maglev Train and Guideway System)

  • 공은호;강부병;나성수
    • 한국소음진동공학회논문집
    • /
    • 제21권2호
    • /
    • pp.137-145
    • /
    • 2011
  • This study is proposed to develop a numerical interaction model of the magnetically levitated(maglev) train and guideway. For this purpose, equation of motion for 6-DOF vehicle model, EMS, guideway and guideway irregularity are derived as the state-space equation. In order to solve the state space equations, the present work was performed via matlab simulation using Runge-Kutta method. Through the simulation, the effect of dynamic response of maglev system to different vehicle speeds, guideway rigidity(EI) and masses is investigated.

Differential Game Based Air Combat Maneuver Generation Using Scoring Function Matrix

  • Park, Hyunju;Lee, Byung-Yoon;Tahk, Min-Jea;Yoo, Dong-Wan
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권2호
    • /
    • pp.204-213
    • /
    • 2016
  • A differential game theory based approach is used to develop an automated maneuver generation algorithm for Within Visual Range (WVR) air-to-air combat of unmanned combat aerial vehicles (UCAVs). The algorithm follows hierarchical decisionmaking structure and performs scoring function matrix calculation based on differential game theory to find the optimal maneuvers against dynamic and challenging combat situation. The score, implying how much air superiority the UCAV has, is computed from the predicted relative geometry, relative distance and velocity of two aircrafts. Security strategy is applied at the decision-making step. Additionally, a barrier function is implemented to keep the airplanes above the altitude lower bound. To shorten the simulation time to make the algorithm more real-time, a moving horizon method is implemented. An F-16 pseudo 6-DOF model is used for realistic simulation. The combat maneuver generation algorithm is verified through three dimensional simulations.

의사-임피던스 모델을 이용한 비평탄면에서의 2족보행로봇의 보행 (Locomotion of Biped Robots on Irregular Surface Based on Pseudo-Impedance Model)

  • 신현식;박종현;권오흥
    • 대한기계학회논문집A
    • /
    • 제34권6호
    • /
    • pp.667-673
    • /
    • 2010
  • 본 논문은 의사-임피던스 모델을 이용하여 2족보행로봇이 비평탄면에서 보행하는 제어기법을 제안한다. 의사-임피던스 모델은 인간이 보행 시, 발바닥이 지면과 순응하는 동작을 모사하였다. 지면과 접촉하면서 인간의 발바닥은 2가지 보행상태를 갖게 된다. 첫 번째 상태에서는 지면과 순응하기 위해 노력이나 의도적인 토크를 가하는 것이 아니라 수동적인 모션으로 순응하게 된다. 두 번째 상태에서는 지면과 접촉한 후, 적절한 토크를 유지하여 인간의 몸이 보행을 지속할 수 있게끔 유도하며 이를 하중이동단계라고 한다. 이러한 과정이 안정적으로 로봇의 보행을 유지할 수 있음을 12자유도의 2족보행로봇과 6축의 힘을 가지는 환경모델을 반영한 시뮬레이션을 통해 보여준다. 이러한 시뮬레이션결과가 제안된 의사-임피던스 모델이 효과적임을 보여준다.

공대지 유도탄의 발사유효범위(LAR) 산출 알고리듬 (Computation Algorithm for Launch Acceptability Region of Air-to-Surface Missiles)

  • 박상섭;홍주현;유창경
    • 한국항공우주학회지
    • /
    • 제43권10호
    • /
    • pp.910-919
    • /
    • 2015
  • 전투기 탑재용 무장제어 알고리듬은 교전상황에서 전투기의 임무 수행 및 생존과 직결된다. 공대지 유도탄의 경우 조종사에게 LAR로 알려진 발사 유효 범위를 무장제어 알고리듬을 통하여 전투기 MFD상에 전시해 준다. LAR는 교전 거리의 계산을 통해 산출된 사거리 테이블을 이용하여 생성된다. 본 논문에서는 AGM-84와 AGM-88 공대지 유도탄의 운용모의에 대하여 소개하고, 이를 바탕으로 Pseudo 6자유도 모델에 기반한 사거리 테이블 산출과 실시간 LAR 산출 알고리듬에 대한 내용을 언급하였다. 구성한 알고리듬의 성능 검증을 위하여 모의대상 유도탄의 교전 시뮬레이션을 수행하고 LAR를 산출하여 분석하였다.