• Title/Summary/Keyword: 6자유도 운동방정식

Search Result 68, Processing Time 0.045 seconds

Design and Performance Evaluation of Controller for Unstable Motion of Underwater Vehicle after Water Entry (수중운동체 입수 초기의 불안정 거동에 대한 제어기 설계 및 성능평가)

  • Park, Yeong-Il;Ryu, Dong-Ki;Kim, Sam-Soo;Lee, Man-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.166-175
    • /
    • 1999
  • This paper describes a design and performance evaluation of robust controller which overrides unstable motion and pulls out quickly after water entry of underwater vehicle dropped from aircraft or surface ship. We use 6-DOF equation for model of motions and assume parameter uncertainty to reflect the difference of real motion from modelled motion equation. we represent a nonlinear system with uncertainty as Takagi and Sugeno's(T-S) fuzzy models and design controller stabilizing them. The fuzzy controller utilizes the concept of so-called parallel distributed compensation (PDC). Finally, we confirm stability and performance of the controller through computer simulation and hardware in the loop simulation (HILS).

  • PDF

Vehicle-Bridge Interaction Analysis of Railway Bridges by Using Conventional Trains (기존선 철도차량을 이용한 철도교의 상호작용해석)

  • Cho, Eun Sang;Kim, Hee Ju;Hwang, Won Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.31-43
    • /
    • 2009
  • In this study, the numerical method is presented, which can consider the various train types and can solve the equations of motion for a vehicle-bridge interaction analysis by non-iteration procedure through formulating the coupled equations of motion. The coupled equations of motion for the vehicle-bridge interaction are solved by the Newmark ${\beta}$ of a direct integration method, and by composing the effective stiffness matrix and the effective force vector according to a analysis step, those can be solved with the same manner of the solving procedure of equilibrium equations in static analysis. Also, the effective stiffness matrix is reconstructed by the Skyline method for increasing the analysis effectiveness. The Cholesky's matrix decomposition scheme is applied to the analysis procedure for minimizing the numerical errors that can be generated in directly calculating the inverse matrix. The equations of motion for the conventional trains are derived, and the numerical models of the conventional trains are idealized by a set of linear springs and dashpots with 16 degrees of freedom. The bridge models are simplified by the 3 dimensional space frame element which is based on the Euler-Bernoulli theory. The rail irregularities of vertical and lateral directions are generated by the PSD functions of the Federal Railroad Administration (FRA). The results of the vehicle-bridge interaction analysis are verified by the experimental results for the railway plate girder bridges of a span length with 12 m, 18 m, and the experimental and analytical data are applied to the low pass filtering scheme, and the basis frequency of the filtering is a 2 times of the 1st fundamental frequency of a bridge bending.

Mathematical Modeling for Dynamic Performance Analysis and Controller Design of Manta-type UUV (만타형상 무인잠수정의 운동성능 해석 및 제어기 설계를 위한 비선형 수학모델 개발)

  • Byun, Seung-Woo;Kim, Joon-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.21-28
    • /
    • 2010
  • This paper describes the mathematical model and controller design for Manta-type Unmanned Underwater Test Vehicle (MUUTV) with 6 DOF nonlinear dynamic equations. The mathematical model contains hydrodynamic forces and moments expressed in terms of a set of hydrodynamic coefficients which were obtained through the PMM (Planar Motion Mechanism) test. Based on the 6 DOF dynamic equations, numerical simulations have been performed to analyze the dynamic performances of the MUUTV. In addition, using the mathematical model PID and sliding mode controller are constructed for the diving and steering maneuver. Simulation results show that the control performances of the MUUTV and compared with these of NPS (Naval Postgraduate School) AUV II.

Multibody Dynamics Simulation and Experimental Study on the Tagline Control of a Cargo Suspended by a Floating Crane (해상크레인으로 인양하는 중량물의 Tagline 제어를 위한 다물체계 동역학 시뮬레이션 및 실험)

  • Ku, Nam-Kug;Lee, Kyu-Yuel;Kwon, Jung-Han;Cha, Ju-Hwan;Ham, Seung-Ho;Ha, Sol;Park, Kwang-Phil
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.13-22
    • /
    • 2010
  • This paper describes tagline PD control for reduction of motion for the heavy cargo(load) suspended by a floating crane. The equations of motion are set up considering the 6-degree-of-freedom floating crane and the 6-degree-of-freedom load based on multi-body system dynamics. The tagline mechanism is applied to floating crane to control motion of the heavy cargo(load). The winch, mounted on the deck of floating crane, is used to control the tension of tagline. To generate control force, PD control algorithm is applied. Numerical simulation and experiment is executed to verify the tagline control mechanism. The numerical simulation and experiment shows that the tagline control mechanism reduces the motion of the load suspended by a floating crane.

Plate Bending Finite Element Model Using Higher-order Inplane Displacement Profile (면방향(面方向) 고차변위(高次變位)를 고려(考慮)한 평판(平板) 유한요소(有限要素)모델)

  • Shin, Hyun Mook;Shin, Young Shik;Kim, Hyeong Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.65-73
    • /
    • 1987
  • An efficient plate bending finite element has been developed using higher-order inplane displacement profiles of the plate. The 6-noded, 21-d.o.f. triangular element including shear deformation effect has been derived from the plate-like continuum by the Galerkin's weighted residual method. Square plate examples were tested with selected element meshes and several aspect ratios for their static behavior under uniformly distributed load. The result of the example tests indicated consistently good performance of the present higher-order plate bending element in comparison with the thin and thick plate solution and other existing finite element solutions.

  • PDF

Simple Kinematic Model Generation by Learning Control Inputs and Velocity Outputs of a Ship (선박의 제어 입력과 속도 출력 학습에 의한 단순 운동학 모델 생성)

  • Kim, Dong Jin;Yun, Kunhang
    • Journal of Navigation and Port Research
    • /
    • v.45 no.6
    • /
    • pp.284-297
    • /
    • 2021
  • A simple kinematic model for the prediction of ship manoeuvres based on trial data is proposed in this study. The model consists of first order differential equations in surge, sway, and yaw directions which simulate the time series of each velocity component. Actually instead of sea trial data, dynamic model simulations are conducted with randomly varied control inputs such as propeller revolution rates and rudder angles. Based on learning of control inputs and velocity outputs of dynamic model simulations in sufficient time, kinematic model coefficients are optimized so that the kinematic model can be approximately reproduce the velocity outputs of dynamic model simulations with arbitrary control inputs. The resultant kinematic model is verified with new dynamic simulation sets.

PASEM을 이용한 KSR-III Nose Fairing 분리운동 예측

  • Ok, Ho-Nam;Kim, In-Sun;Ra, Sung-Ho;Kim, Seong-Lyong;Oh, Beom-Suk
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.171-181
    • /
    • 2003
  • The nose fairings of KSR-III are designed to be separated from the rocket by explosive force at the mission altitude to expose the payload. Adequate amount of separation force should be imposed to allow safe separation without collision between the fairings and the rocket, and the separation device was designed for the separation at very high altitude where almost no air load was expected. As the development of KSR-III goes on, several design changes have made and lower separation altitude of 45km is expected as a result. Under these circumstances, it is required to determine if the nose fairings can be separated without collision with much severer air load than for the design condition. In this study, the 6-DOF motion analysis program, PASEM, which was developed to predict the strap-on booster separation, is modified to simulate the pivotal motion of the fairings at early stages of separation. The accuracy of pivot motion simulation is validated by comparison with the results of ground test and the accurate separation conditions are deduced from it. Trajectory simulations are performed to see if separation without collision is possible with varying angle of attack, direction of gravity, and the effect of gust. It is also found that reducing the separation angle of the clamshell hinge from 60 degrees to 40 degrees can enhance separation safety and separation at lower altitude of 40km can be done without collision.

  • PDF

Numerical analysis of 2-DOF motions of an ocean floater with sloshing effects (슬로싱 영향을 동반한 해양 부유체의 2자유도 거동 수치해석)

  • Kim, HyunJong;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.617-622
    • /
    • 2013
  • The sloshing of liquid inside an ocean floater is caused by disturbances due to waves. For the analysis of sloshing impact within the floater and that of waves on the floater, the coupled analysis method is used. The Stokes $5^{th}$ order non-linear wave theory equations were adapted for wave making. Furthermore, Navier-Stokes equation and Shear-Stress Transport (SST) turbulent model were used to Computational Fluid dynamics, where the ocean floater motions are considered the heave and the pitch motion. The results obtained confirms the mutual relationship between the rigid body motions and that of sloshing, where the sloshing behaviour within the floater is characterized by the wave effects on the floater.

Dynamic Stability of a Damaged Ship in Beam Wind and Waves (손상된 선박의 횡풍.횡파중에서의 동적 안정성)

  • K.H. Sohn;S.G. Lee;K.S. Choi;Y.S. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.1
    • /
    • pp.50-59
    • /
    • 2000
  • This paper presents a brief outline of dynamic stability of a damaged ship at final stage of flooding in rough beam wind and waves. One degree-of-freedom, roll equation is adopted with effects of flooding water and external forces due to wind and waves, but without effect of sloshing. We discuss the dynamic stability of the damaged ship in terms of capsizing probability based on risk analysis, the method of which was firstly proposed by Umeda et al.[6] to high speed craft in intact condition. As a result, we can evaluate the dynamic stability of the damaged ship in probabilistic manner according to sea state, operating condition and damage situation.

  • PDF

Exact Solutions for Vibration and Buckling of Rectangular Plates Loaded at Two Simply-Supported Opposite Edges by In-Plane Moments, Free along the Other Two Edges (면내(面內) 모멘트를 받는 단순지지된 두 모서리와 자유경계인 나머지 두 모서리를 갖는 직사각형 판의 진동과 좌굴의 엄밀해)

  • Shim, Hyun-Ju;Woo, Ha-Young;Kang, Jae-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.4 s.22
    • /
    • pp.81-92
    • /
    • 2006
  • This paper presents exact solutions for the free vibrations and buckling of rectangular plates having two opposite, simply supported edges subjected to linearly varying normal stresses causing pure in-plane moments, the other two edges being free. Assuming displacement functions which are sinusoidal in the direction of loading (x), the simply supported edge conditions are satisfied exactly. With this the differential equation of motion for the plate is reduced to an ordinary one having variable coefficients (in y). This equation is solved exactly by assuming power series in y and obtaining its proper coefficients (the method of Frobenius). Applying the free edge boundary conditions at y=0, b yields a fourth order characteristic determinant for the critical buckling moments and vibration frequencies. Convergence of the series is studied carefully. Numerical results are obtained for the critical buckling moments and some of their associated mode shapes. Comparisons are made with known results from less accurate one-dimensional beam theory. Free vibration frequency and mode shape results are also presented. Because the buckling and frequency parameters depend upon Poisson's ratio ( V ), results are shown for $0{\leq}v{\leq}0.5$, valid for isotropic materials.

  • PDF