• 제목/요약/키워드: 5-fold cross validation

검색결과 126건 처리시간 0.023초

스마트 기기 환경에서 전력 신호 분석을 통한 프라이버시 침해 위협 (Threatening privacy by identifying appliances and the pattern of the usage from electric signal data)

  • 조재연;윤지원
    • 정보보호학회논문지
    • /
    • 제25권5호
    • /
    • pp.1001-1009
    • /
    • 2015
  • 스마트 그리드 안에서 고안된 스마트 미터는 우리가 사용하는 전력 신호를 실시간으로 데이터화해서 전력 공급단의 메인 서버로 전송한다. 이를 통해 전력 관리의 효율성은 증가한 반면, 사용자의 정보를 담은 데이터의 보안 문제가 새로운 위협으로 부상하였다. 본 논문은 스마트 미터에서 추출한 전력 데이터를 통해 가정 내 기기의 식별 및 기기별 사용패턴에 대한 추론을 보안 관점에서 해석함으로써 스마트 기기 환경에서 데이터 노출의 위협을 지적한다. 주성분분석(Principal Component Analysis)으로 데이터의 특징을 추출하였고 k-근접 이웃(k- Nearest Neighbor)분류기로 기기를 식별하고 기기상태를 추론하였으며, 검증방법으로는 10차 교차검증(10-fold Cross Validation)을 활용하였다.

A Study on the Prediction of Community Smart Pension Intention Based on Decision Tree Algorithm

  • Liu, Lijuan;Min, Byung-Won
    • International Journal of Contents
    • /
    • 제17권4호
    • /
    • pp.79-90
    • /
    • 2021
  • With the deepening of population aging, pension has become an urgent problem in most countries. Community smart pension can effectively resolve the problem of traditional pension, as well as meet the personalized and multi-level needs of the elderly. To predict the pension intention of the elderly in the community more accurately, this paper uses the decision tree classification method to classify the pension data. After missing value processing, normalization, discretization and data specification, the discretized sample data set is obtained. Then, by comparing the information gain and information gain rate of sample data features, the feature ranking is determined, and the C4.5 decision tree model is established. The model performs well in accuracy, precision, recall, AUC and other indicators under the condition of 10-fold cross-validation, and the precision was 89.5%, which can provide the certain basis for government decision-making.

Exploring Machine Learning Classifiers for Breast Cancer Classification

  • Inayatul Haq;Tehseen Mazhar;Hinna Hafeez;Najib Ullah;Fatma Mallek;Habib Hamam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권4호
    • /
    • pp.860-880
    • /
    • 2024
  • Breast cancer is a major health concern affecting women and men globally. Early detection and accurate classification of breast cancer are vital for effective treatment and survival of patients. This study addresses the challenge of accurately classifying breast tumors using machine learning classifiers such as MLP, AdaBoostM1, logit Boost, Bayes Net, and the J48 decision tree. The research uses a dataset available publicly on GitHub to assess the classifiers' performance and differentiate between the occurrence and non-occurrence of breast cancer. The study compares the 10-fold and 5-fold cross-validation effectiveness, showing that 10-fold cross-validation provides superior results. Also, it examines the impact of varying split percentages, with a 66% split yielding the best performance. This shows the importance of selecting appropriate validation techniques for machine learning-based breast tumor classification. The results also indicate that the J48 decision tree method is the most accurate classifier, providing valuable insights for developing predictive models for cancer diagnosis and advancing computational medical research.

지원벡터기계를 이용한 출혈을 일으킨 흰쥐에서의 생존 예측 (Survival Prediction of Rats with Hemorrhagic Shocks Using Support Vector Machine)

  • 장경환;최재림;유태근;권민경;김덕원
    • 대한의용생체공학회:의공학회지
    • /
    • 제33권1호
    • /
    • pp.1-7
    • /
    • 2012
  • Hemorrhagic shock is a common cause of death in emergency rooms. Early diagnosis of hemorrhagic shock makes it possible for physicians to treat patients successfully. Therefore, the purpose of this study was to select an optimal survival prediction model using physiological parameters for the two analyzed periods: two and five minutes before and after the bleeding end. We obtained heart rates, mean arterial pressures, respiration rates and temperatures from 45 rats. These physiological parameters were used for the training and testing data sets of survival prediction models using an artificial neural network (ANN) and support vector machine (SVM). We applied a 5-fold cross validation method to avoid over-fitting and to select the optimal survival prediction model. In conclusion, SVM model showed slightly better accuracy than ANN model for survival prediction during the entire analysis period.

인체측정조사에서 측정곤란부위 예측을 위한 의사결정나무 추천 모형 탐지에 관한 연구 (A Study on Exploration of the Recommended Model of Decision Tree to Predict a Hard-to-Measure Mesurement in Anthropometric Survey)

  • 최종후;김선경
    • 응용통계연구
    • /
    • 제22권5호
    • /
    • pp.923-935
    • /
    • 2009
  • 본 연구는 의사결정나무의 추천 모형 선택을 위한 비교실험에 초점을 두고 있다. 의사결정나무 모형은 구축된 모형에 기반을 두고 미래 관측치에 대한 예측 기능을 수행하게 될 것이므로 구축된 모형이 아무리 정치(精緻)하다고 하더라도 일반화의 성질을 충족시키지 못하면 실제성이 없게 된다. 따라서 본 연구는 교차타당성 검토를 통해 일반화의 성질을 충족시키면서 우수한 예측력을 갖는 추천 모형을 탐지하는 절차를 연구하는 데에 초점을 맞추고 있다. 사례 연구로 인체측정자료를 사용하여 측정곤란부위 예측을 위한 의사결정나무 추천 모형을 탐지한다. 그 결과 CART 모형 이 추천 모형으로 탐지되었다.

인공지능을 활용한 기계학습 앙상블 모델 개발 (Development of Machine Learning Ensemble Model using Artificial Intelligence)

  • 이근원;원윤정;송영범;조기섭
    • 열처리공학회지
    • /
    • 제34권5호
    • /
    • pp.211-217
    • /
    • 2021
  • To predict mechanical properties of secondary hardening martensitic steels, a machine learning ensemble model was established. Based on ANN(Artificial Neural Network) architecture, some kinds of methods was considered to optimize the model. In particular, interaction features, which can reflect interactions between chemical compositions and processing conditions of real alloy system, was considered by means of feature engineering, and then K-Fold cross validation coupled with bagging ensemble were investigated to reduce R2_score and a factor indicating average learning errors owing to biased experimental database.

Prediction of concrete compressive strength using non-destructive test results

  • Erdal, Hamit;Erdal, Mursel;Simsek, Osman;Erdal, Halil Ibrahim
    • Computers and Concrete
    • /
    • 제21권4호
    • /
    • pp.407-417
    • /
    • 2018
  • Concrete which is a composite material is one of the most important construction materials. Compressive strength is a commonly used parameter for the assessment of concrete quality. Accurate prediction of concrete compressive strength is an important issue. In this study, we utilized an experimental procedure for the assessment of concrete quality. Firstly, the concrete mix was prepared according to C 20 type concrete, and slump of fresh concrete was about 20 cm. After the placement of fresh concrete to formworks, compaction was achieved using a vibrating screed. After 28 day period, a total of 100 core samples having 75 mm diameter were extracted. On the core samples pulse velocity determination tests and compressive strength tests were performed. Besides, Windsor probe penetration tests and Schmidt hammer tests were also performed. After setting up the data set, twelve artificial intelligence (AI) models compared for predicting the concrete compressive strength. These models can be divided into three categories (i) Functions (i.e., Linear Regression, Simple Linear Regression, Multilayer Perceptron, Support Vector Regression), (ii) Lazy-Learning Algorithms (i.e., IBk Linear NN Search, KStar, Locally Weighted Learning) (iii) Tree-Based Learning Algorithms (i.e., Decision Stump, Model Trees Regression, Random Forest, Random Tree, Reduced Error Pruning Tree). Four evaluation processes, four validation implements (i.e., 10-fold cross validation, 5-fold cross validation, 10% split sample validation & 20% split sample validation) are used to examine the performance of predictive models. This study shows that machine learning regression techniques are promising tools for predicting compressive strength of concrete.

Computational Detection of Prokaryotic Core Promoters in Genomic Sequences

  • Kim Ki-Bong;Sim Jeong Seop
    • Journal of Microbiology
    • /
    • 제43권5호
    • /
    • pp.411-416
    • /
    • 2005
  • The high-throughput sequencing of microbial genomes has resulted in the relatively rapid accumulation of an enormous amount of genomic sequence data. In this context, the problem posed by the detection of promoters in genomic DNA sequences via computational methods has attracted considerable research attention in recent years. This paper addresses the development of a predictive model, known as the dependence decomposition weight matrix model (DDWMM), which was designed to detect the core promoter region, including the -10 region and the transcription start sites (TSSs), in prokaryotic genomic DNA sequences. This is an issue of some importance with regard to genome annotation efforts. Our predictive model captures the most significant dependencies between positions (allowing for non­adjacent as well as adjacent dependencies) via the maximal dependence decomposition (MDD) procedure, which iteratively decomposes data sets into subsets, based on the significant dependence between positions in the promoter region to be modeled. Such dependencies may be intimately related to biological and structural concerns, since promoter elements are present in a variety of combinations, which are separated by various distances. In this respect, the DDWMM may prove to be appropriate with regard to the detection of core promoter regions and TSSs in long microbial genomic contigs. In order to demonstrate the effectiveness of our predictive model, we applied 10-fold cross-validation experiments on the 607 experimentally-verified promoter sequences, which evidenced good performance in terms of sensitivity.

GLS와 Bass 모형을 결합한 하이브리드 모형을 이용한 영화 관객 수 예측 (Prediction of movie audience numbers using hybrid model combining GLS and Bass models)

  • 김보경;임창원
    • 응용통계연구
    • /
    • 제31권4호
    • /
    • pp.447-461
    • /
    • 2018
  • 국내 영화 산업 매출은 매년 증가하고 있다. 극장은 영화의 1차 판매 경로이며, 극장을 이용하는 관객 수는 부가판권에 영향을 준다. 따라서 극장을 이용하는 관객의 수는 영화 산업 매출에 직결되는 중요한 요소이다. 본 논문에서 특정일의 관객 수를 예측하기 위하여 다중선형회귀모형과 Bass 모형을 결합한 Hybrid 모형을 고려한다. 두 모형을 결합함으로써 회귀분석의 예측값을 Bass 모형의 예측값으로 보정하였다. 분석에는 개봉일이 모두 다른 세 영화를 이용하였다. All subset regression 방법을 이용해 모든 가능한 조합을 생성하고 5중 교차검증(5-fold cross validation)을 통해 5번 모형을 추정한다. 이 때 제곱근평균오차가 가장 작은 모형으로 예측값을 구한 뒤 Bass 모형의 예측값과 결합해 최종 예측값을 구하게 된다. 과거데이터가 존재할수록 Bass 모형의 가중치는 증가하면서 예측값에 보정효과를 준다는 것을 확인할 수 있었다.

인공지능을 이용한 수도권 학교 미세먼지 취약성 평가: Part II - 학교 미세먼지 범주화 (Vulnerability Assessment for Fine Particulate Matter (PM2.5) in the Schools of the Seoul Metropolitan Area, Korea: Part II - Vulnerability Assessment for PM2.5 in the Schools)

  • 손상훈;김진수
    • 대한원격탐사학회지
    • /
    • 제37권6_2호
    • /
    • pp.1891-1900
    • /
    • 2021
  • 직경 2.5 ㎛ 이하인 초미세먼지는 급격한 도시화와 인구 증가로 인해 대도시에서 많이 발생하며, 유아 및 청소년기는 성인에 비해 초미세먼지에 취약하고 만성 질환으로 이어질 가능성이 높다. 특히 대부분의 청소년들은 학교에서 가장 많은 시간을 보내고 있으며, 다양한 이유에 의해 실외에서 발생한 초미세먼지가 실내로 유입된다. 본 연구는 외부 요인에 의해 발생하는 학교 초미세먼지를 예측하고 학교별 초미세먼지 범주화를 수행하였다. 10-fold cross validation과 grid-search method를 적용한 random forest (RF) 모델에 화학과 기상 인자, 위성 기반의 aerosol optical depth (AOD)를 입력 자료로 하여 학교 초미세먼지를 예측하고 정확도 평가를 위해 4가지 통계 지표를 이용하였다. 학교 미세먼지 범주화를 위해 6가지 유형을 가진 느슨한 기준과 엄격한 기준을 정의하였으며, 범주화 결과 느슨한 기준의 경우 유형 2와 3에, 엄격한 기준의 경우 유형 3과 4에 가장 많은 학교가 포함되었다.