The Journal of Microbiology, October 2005, p.411-416

Copyright (©) 2005, The Microbiological Society of Korea

Computational Detection of Prokaryotic Core
Promoters in Genomic Sequences

Ki-Bong Kim"* and Jeong Seop Sim’

'Department of Bioinformatics Engineering, Sangmyung University, Cheonan 330-180, Republic of Korea
’Department of Computer Science and Engineering, Inha University, Incheon 402-751, Republic of Korea

(Received December 22, 2004 / Accepted April 14, 2005)

The high-throughput sequencing of microbial genomes has resulted in the relatively rapid accumula-
tion of an enormous amount of genomic sequence data. In this context, the problem posed by the detec-
tion of promoters in genomic DNA sequences via computational methods has attracted considerable
research attention in recent years. This paper addresses the development of a predictive model, known
as the dependence decomposition weight matrix model (DDWMM), which was designed to detect the
core promoter region, including the -10 region and the transcription start sites (TSSs), in prokaryotic
genomic DNA sequences. This is an issue of some importance with regard to genome annotation efforts.
Our predictive model captures the most significant dependencies between positions (allowing for non-
adjacent as well as adjacent dependencies) via the maximal dependence decomposition (MDD) pro-
cedure, which iteratively decomposes data sets into subsets, based on the significant dependence
between positions in the promoter region to be modeled. Such dependencies may be intimately related
to biological and structural concerns, since promoter elements are present in a variety of combinations,
which are separated by various distances. In this respect, the DDWMM may prove to be appropriate
with regard to the detection of core promoter regions and TSSs in long microbial genomic contigs.
In order to demonstrate the effectiveness of our predictive model, we applied 10-fold cross-validation
experiments on the 607 experimentally-verified promoter sequences, which evidenced good perfor-
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mance in terms of sensitivity.
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With the increasing completion of a host of genome
sequences, one of the more interesting challenges in
molecular biology today is to characterize the mecha-
nisms by which gene expression is regulated (Ko et al.,
2002; Jones, 2005). In this context, the problem posed by
the identification of promoters in genomic DNA
sequences, as well as the determination of the significant
patterns they harbor via computational methods, has
attracted a considerable amount of research attention in
recent years (Pedersen et al., 1999; Sinha et al., 2002).
One point of view holds that this problem is intimately
related with the fundamental biochemical issues surround-
ing the specification of the precise sequence determinants
associated with transcription and translation (Hernandez
et al., 2002). Another point of view holds that the reso-
lution of this problem may contribute to improvements in
gene identification, as well as the prediction of gene
expression contexts. Moreover, the location and decryp-
tion of promoters is an interesting proposition in its own
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right. Existing algorithms for the prediction of promoters
are predicated on the identification of regulatory signals,
specifically binding sites for transcription factors.
Although the problem posed by the prediction of regula-
tory sites has been addressed in a number of studies for at
least 15 years, it is still far from being solved (Fickett et
al., 1997; Ohler et al., 2001). One reason for this is that
the learning sample rarely contains more than 20-30 sites.
However, even when working with large samples, it has
proven extremely difficult to construct a good recognition
rule. The physics of protein-DNA interaction remains
poorly understood, making it virtually impossible to
derive a proper set of features for use in either statistical
or pattern recognition algorithms. Furthermore, the latter
algorithms cannot take biological context into account. In
particular, interaction between different regulatory sites,
and structural properties of DNA, remain impossible to
integrate into current algorithmic schemes. In many cases,
simple profile methods perform reasonably well, in that
they can correctly identify true sites if the number of alter-
natives is not too great (Frech et al., 1997). In this regard,
position-specific scoring matrices (PSSMs) carry the
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important advantage that they are simple, easy to under-
stand, and easy to use (Mount, 2001). In addition, PSSM
is probably the most effective model to use in cases in
which relatively few (say, a dozen up to a few hundred)
signal sequences are available. A PSSM can be con-
structed from a frequency matrix via the conversion of
frequencies to probabilities or scores, in which each ele-
ment contains the frequency of a given member of the
alphabet, observed at a given position within an aligned
set of sequences. An important limitation inherent to
PSSMs, however, involves the assumption of indepen-
dence between positions. To compensate for the weak
points inherent to PSSMs, we have attempted to develop
a more sophisticated model, which is able to address the
most significant observed dependencies between posi-
tions, and allow for both non-adjacent and adjacent
dependencies.’

The target organism used in this study was Escherichia
coli. This is the microorganism about which we have the
most knowledge, with regard to the mechanisms under-
lying gene regulation, metabolism, etc., and appears to be
an appropriate choice for use in a long-standing model
system for the study of gene regulation. In the prokaryote,
E. coli, the form of RNA-polymerase responsible for the
recognition of promoter sequences possesses the protein
subunit composition a,Bf’c. This so-called holo-enzyme
can be further divided into two functional components:
the core enzyme (a,ff; also designated as E), and the
sigma factor (o). The sigma factor performs an important
function in the recognition of promoter sequences, and
after successful initiation, it is released from the holoen-
zyme (Gross et al., 1992). Several different sigma factors
have been detected, each of which recognizes a specific
subset of promoters (Kim et al., 2004). These subsets
exhibit different nucleotide sequences. The biological sig-
nificance of this is that each promoter group exerts control
over genes which are needed under physiologically sim-
ilar conditions, and that, therefore, require simultaneous
expression. In fact, this knowledge has already spurred
the development of several models or theories dealing
with gene regulation (Collado-Vides, 1992), as well as
several dedicated databases (Salgado er al., 2004). Also,
several computational methods have been developed for
the prediction of the occurrence of promoters or regula-
tory sites in the DNA sequences of E. coli (Hertz et al.,
1990; Thieffry er al., 1998). Several algorithms and pro-
grams for promoter recognition are currently available.
They are predicated primarily on machine learning and
homology-based string matching approaches. These tech-
niques have not paid enough attention to the structural
aspects inherent to transcription initiation processes. We
believe that any effective computa-tional method should
take into account the structural aspects which reflect bio-
logical situations such as those referenced earlier. There-
fore, we have explored the pos-sible correlations in the
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relevant promoter regions. Our predictive model, referred
to as the dependence decomposition weight matrix model
(DDWMM), was constructed in order to reflect and com-
pensate for the overall structure and biological context of
these promoter regions. This model was also designed to
predict promoters ab initio, i.¢., using the DNA sequences
of the organisms of interest as the sole information. We
have attempted to devise a reliable probabilistic model
which reflects the underlying biology and biological con-
text, which is also able to deal with the diverse variations
(i.e., variation in positional nucleotides and transcription
elements) and arbitrary interactions (i.e., non-adjacent and
adjacent dependencies) which are inherent to promoter
sequences. The term “non-adjacent dependencies”, refers
to dependencies between positions with a variety of sep-
arations.

Materials and Methods

The primary goal for the construction of the DDWMM
was to identify the TSSs and core promoter regions in the
genomic sequences. In order to achieve this goal, the
DDWMM was constructed, to reflect the overall structure
of the core promoter region and the non-adjacent as well
as the adjacent dependencies within or between transcrip-
tion elements in the region. In order to construct such a
model, we employed several processes. The construction
of the DDWMM began with the collection of the data sets
required for this work. The target promoter region of bio-
logical significance, judging from positional information
content, was defined by the alignment of all collected pro-
moter sequences, and the careful scanning of information
content at each position. The target promoter region
sequences were then iteratively subclassified into subsets,
via maximal dependency decomposition (MDD) (Burge
ef al., 1997). This process was required in order to incor-
porate biological context and long-range dependency into
our predictive model. This resulted in the construction of
a binary tree with many leaf nodes, each of which repre-
sented a subset of the target promoter region data. In order
to account for the adjacent positions of the dependencies,
we applied a first-order Markov model for each subset
generated by the MDD procedure.

Datu set of promoter sequences ,

From the ‘promoter’ table in RegulonDB (Salgado ef al.,
2004), which is a database containing information regard-
ing transcription regulation and operon organization in £.
coli, we collected all of the experimentally-verified pos-
sible core promoter sequences, a total of 607 of which
were ultimately identified. Each promoter sequence was
81 bases long, including 60 bases upstream and 20 bases
downstream from the transcription initiation position.
According to the results of the classification by each
sigma factor, 548 of the 607 promoter sequences belonged
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to the o”-class, and 10, 21, 22, 3, 3, and 83 belonged to
the 6™, 6®, 6°%, 6%, 6*, and so forth classes, respectively.
The ambiguous nucleotide symbol ‘N’ within the
sequences was randomly converted to either 4, 7, G, or C.
A portion of this data set was also employed in the assess-
ment of predictive accuracy. The use of E. coli promoter
sequences in the construction of a predictive model for
prokaryotes is justified, considering the similar transcrip-
tion machinery employed by E. coli, as well as other
prokaryotes.

Limiting the promoter region with significant information
to be modeled

Using the promoter sequences collected as described
above, we initially limited the promoter region in the con-
struction of our predictive model. Most existing algo-
rithms use a promoter region which has been determined
arbitrarily, based on the available biological domain
knowledge and experimental evidence. However, we used
an objective criterion, namely, positional information con-
tent, to limit the most reasonable region for modeling. We
selected this criterion because the positions with higher
information content tend to exhibit a substantial amount
of nucleotide conservation, which is probably a fact with
a great deal of biological significance. In this context, we
have employed the definition provided by Tom Schneider
{Schneider et al., 1990) whose work followed the work of
Claude Shannon, and who defined the uncertainty mea-
sure as the following:

-
H(l) ==Y, AB,)log, fAB, 1) (bits per position) (1)
B=4

where H(/) is the uncertainty at position /, B is one of the
bases (4, C, G, or T), and f{B,]) is the frequency of base
B at position /. Total information at any position can be
represented by a reduction in uncertainty:

Rsequenc'e(l) =2- [f[(])+€(l’l)] (bltS per pOSitiOﬂ) (2)

where R . 1s the amount of information present at posi-
tion /, 2 is the maximum uncertainty at any given position
(i.e. log, M: in this case, the number of symbols or choices,
M, is 4), and e(n) is a correction factor required in cases in
which the number of sample sequences (#) is small. In this
work, we have ignored the correction factor, as we had
sufficient sample sequences. The entire set of the Rseq”me(/)
values results in the formation of a curve which represents
the importance of each position in the aligned sequences.
In this study, all of the promoter sequences were aligned
using the transcription initiation point (position 61 in Fig.
1) to determine positional information content, as defined
by formula (2). No gaps, i.e. insertions or deletions, were
permitted in this alignment. Hereafter we follow the posi-
tion convention in which the transcription initiation posi-
tion is zero, then decreasing upstream from initiation
position by increments of one, and increasing downstream
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Fig. 1. Positional information content of 607 experimentally confirmed
promoter sequences. [n order to compute positional information con-
tent, the promoter sequences were aligned by TSS (the position 61),
permitting no gaps (i.e. insertions/deletions). The height of the curve
signifies the information content of the sequences at that position, and
the curve itself displays both significant positions and subtle sequence

patterns. The transcription start site and the -10 region (around the
position 50) show relatively high information content.

by increments of one. Based on the information content at
each position, we then limited the reasonable region in the
original promoter stretch (81 bases), which was relatively
rich in information. As a result, our region covers bases
-21 to +4 (26 bases), which were used to construct a pre-
dictive model in this work.

Construction of the DDWMM and using it for prediction
In order to construct a model which allows for the pos-
sibility of “long-range” interactions between positions
which are further than two or three nucleotides apart, we
considered the degree of dependence existing between
arbitrary positions in the promoter region (-21 to +4). Chi-
square statistics were used to determine dependencies
between the N, and N, variables (which take on the four
possible values 4, C, G T), indicating the nucleotides at
positions i and j of the sequence, i.e., to determine
whether an association existed between the occurrence of
a particular nucleotide(s) at position /, and the occurrence
of other nucleotide(s) at position j within the same
sequence. As an example of such a comparison, positions
-11 versus -7 in the set of 607 promoter sequences is illus-
trated, using the standard 4x4 contingency table represen-
tation, in Table 1. The observed value of X*=119.96,
indicates a significant degree of dependence between
positions at the P<0.001 level. An examination of the
contingency table data revealed that most of the depen-
dence was the result of a positive association between A4
at position -11 and T at position -7, with a corresponding
increase in the incidence of T"at -7, in which N |, is 4. We
also determined there to be a somewhat weaker negative
association between the occurrence of 4 at position -11
and 4 at -7, and so on. Overall, the most notable feature
of this table is that the distribution of nucleotides at posi-
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Table 1. Contingency table for the nucleotide variables, N | versus N,
in the set of all 607 promoter sequences. For each pair of nucleotides X,
¥, the observed count (“O”) of the event that N |, = X'and N, = Y is given
first, followed by the expected value (“E”). X>=119.96 (p<0.001,
degree of freedom (df) is 9)

N A T G C Total

0 E O E O E 0 E O

29 63 179 117 25 33 27 46 260
66 47 46 87 27 25 54 34 193
31 20 23 36 16 10 10 14 80

o o 39 »

22 18 25 33 10 10 17 13 74

Total 22 18 25 33 10 10 17 13 74

tion -7 seems to depend on whether N, is or is not 4 (the
consensus at position -11). Then, using the dependency
measure as a yardstick, we subclassified all of the exper-
imentally-verified promoter sequences, which constitute a
learning data set. The dependence decomposition weight
matrix model (DDWMM) is predicated on the maximal
dependence decomposition (MDD) procedure proposed
by Chris Burge, who initially applied it to human donor
splice sites (Burge et al., 1997). The MDD procedure can
be applied to generate, using an aligned set of signal
sequences, a model which captures the most significant
dependencies between positions (allowing for non-adja-
cent as well as adjacent dependencies), essentially via the
substitution of unconditional PSSM probabilities by
appropriate conditional probabilities. This, of course,
depends on sufficient data being available to reliably do
so. Given a data set, D, which consists of » aligned
sequences of length k, we first calculate the chi-square
statistic Xlz ; for N, and N, for each i, j pair with i=;. If
strong dependencies exist between non-adjacent positions,
as well as adjacent positions, then we proceed as followg:

(1) Calculate, for each position i, the sum S = §X"’f ,

L)
which is a yardstick of the degree of dependency between
the variable &V, and the nucleotides at all other positions of
the promoter sequences’ target regions.

(2) If the data set D exhibits a significant degree of
dependency between the positions with variable separa-
tion, we choose the value i, such that S; is maximal, then
partition D into two subsets: D,»], all sequences which
agree with the consensus nucleotide(s) with high fre-
quency at position i;; and D, —, all sequences which do
not.

(3) The first two steps are then repeated on the subsets
Di| and Din_ and on the subsets thereof, which soon
yields a binary “tree” (often called a decision tree), with
a theoretical maximum level of £-1 (Fig. 2).
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Fig. 2. Recursive subclassification of all promoter sequences (607)
using the MDD procedure. Each rounded box represents a subset of
promoter sequences, which correspond to a pattern of matches/mis-
matches to the consensus nucleotide(s) or to the nucleotide with the
highest frequency at a set of positions, which exhibit the highest row
sum of the X7 statistics. For example, W ,T, is the set of promoter
sequences with the consensus nucleotides 4/T and T at positions -12
and -7. The number of corresponding promoter sequences in each sub-
set is provided in parentheses beneath the pattern description. IUB sin-
gle letter symbols are used to represent groups of nucleotides (for
example, W means 4 or T).

This process of subdivision is successively conducted
on each leaf node of the tree, until one of the following
three conditions is satisfied: (i) the theoretical maximum
level of the tree, i.e. (k-1)th level, is achieved (so that no
further subdivision is possible); (ii) no significant depen-
dencies between positions in a subset are detected
between positions in a subset (so that further subdivision
is not indicated); or (iii) the number of sequences in a
resulting subset falls below a preset minimum value, M,
so that reliable conditional probabilities could not be
determined after further subdivision. The results of the
application of the MDD procedure to all 607 promoter
sequences were illustrated in Fig. 2. The initial subdivi-
sion was done, predicated on the consensus W (meaning
A4 or T) at position -12, resulting in the W, and S, sub-
sets (S indicating C or G), which contain 432 and 175
sequences, respectively. No significant dependencies
between the positions in subset S, were detected, and so
this was not divided further. However, subset W, was
sufficiently large, and exhibited significant dependence
between positions (data not shown). Therefore, it was fur-
ther subdivided according to consensus T at position -7,
thereby generating the subsets W .7, and W,V , and so
on (¥ indicating 4, C, or G). Thus, the essential concept
underlying this method is the iterative analysis of data,
initially accounting for the most significant dependence
present, and then for the dependencies which remain after
the previously chosen dependencies have been accounted
for by the subdivision of the data. In order to reflect the
dependencies of adjacent positions, we applied a first-
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order Markov model for each subset, after the MDD pro-
cedure. With a first-order Markov model, the probability
of generating the sequence X =x,, x,,... , X, is as follows:

P20 = pV () (e )p P (s]x2) .0 (a1

= p(l)(xl)ﬁp(i)(xilxi—x) 3)

i=2

where p"” (z]y) is the conditional probability of generating
nucleotide z at position i given nucleotide y at position i-1,
which can be estimated from the corresponding condi-
tional frequency in this work.

The final predictive model for the generation of pro-
moter sequences is, then, essentially a recapitulation of
the subdivision procedure, as described below:

(1) N_,is generated from the first-order Markov model

for all of the combined promoter sequences.

(2a) If N_j, # W, then the first-order Markov model for
subset S, is used to generate nucleotides at the
remaining positions in the promoter sequence.

(2b) If N_,,=W, then N is generated from the first-
order Markov model for the subset W,

(3a) If (N_,=W and) N,#T , then the first-order
Markov model for subset W .V, is used.

(3b) If (N_,,=Wand) N, =T, N, is generated from the
first-order Markov model for W 7.

(4) ... and so on, until the entire 26 bp sequence has
been generated.

Thus, this model actually represents the most significant
dependencies between positions, allowing for both non-
adjacent and adjacent dependencies, which may ade-
quately reflect biological situations.

Results and Discussion

The main goal of this work was to develop a predictive
model which could be employed to computationally rec-
ognize core promoters in long, contiguous prokaryotic
DNA sequences, such as long contigs. This would obvi-
ously be of significant importance in the context of DNA
sequence annotation, which requires the collection of as
much information as possible. Furthermore, such a com-
putational model could facilitate our determination of
which information in a sequence is vital for reliable rec-
ognition, and could also allow us to accumulate a sub-
stantial amount of knowledge on the biology of gene
expression. The approach employed in this work is right-
fully referred to as general promoter prediction method-

Computational promoter prediction in prokaryotic genomic sequences 415

ology, the primary goal of which is the identification of
the transcription start site (TSS) and the core promoter
region for all protein-coding genes. We attempted to
devise a reliable predictive model, which reflects the
underlying biology and biological context, and which is
capable of compensating for the diverse variations (i.e.,
variations in positional nucleotides and transcription ele-
ments) and arbitrary interactions (i.e., non-adjacent and
adjacent dependencies) inherent to the promoter sequences.

In order to test the performance of the DDWMM, we
applied 10-fold cross-validation experiments on the 607
experimentally-verified promoter sequences of fixed
lengths of (-21 ~+4), as mentioned above. In the 10-fold
cross-validations, these 607 promoter sequences were
divided randomly into 10 subsets of approximately sim-
ilar size. For each “fold”, the DDWMM was trained using
all but one of the 10 subsets, then tested on an unseen sub-
set. This procedure was repeated for each of the 10 sub-
sets. The average cross-validation score was assessed
according to the average performance across each of the
ten training runs. In order to compare the performance of
the DDWMM with that of the PSSM, we also applied the
same 10-fold cross-validation experiments on the same
sequence data, under the same conditions, using the
PSSM. Table 2 shows the success percentages of the ten
DDWMM and 10 PSSM experiments. The average sen-
sitivity of DDWMM  was determined to be 82.5%,
whereas the average sensitivity for PSSM was 54%, at a
threshold value of 80. Our results indicated that
DDWMM performed quite well, and also that DDWMM
yielded results superior to those generated by the simpler
PSSM. Although the approach followed in this work
resulted in good performance, there may be a lot of room
for improvement. As an example, the significant disad-
vantage of N, and N, comparisons is that, for positions i
and j with strongly-biased compositions, the expected val-
ues of the contingency table may become so small (such
as < 10) that the X? test becomes unreliable. In order to
resolve this problem, consensus versus NV comparison
may be an appropriate choice, as lower frequency nucle-
otides are pooled in a consensus versus &, comparison.
This would then make the problem a less acute one. In
addition, our method did not take into account enough of
the relevant biological data. This does not, however, indi-
cate that the improvements of our methods necessarily
have to include explicit modeling of the biological reali-
ties inherent to the situation. Rather, it means that it is
important to take biological knowledge into account when

Table 2. Performance comparison of DDWMM with PSSM in 10-fold cross-validation. Each success % was computed from 10 partitions of 607
sequences in training (9/10) and test (1/10) sets, with a threshold value of 80. The last column contains the combined results for all test data.

Testing No. 1 2 3 4 5 6 7 8 9 10 Avg.
DDWMM Success (%) 85 75 85 79 84 32 34 32 89 78 823
PSSM Success (%) 59 66 52 46 46 56 49 49 67 50 54.0




416 Kim and Sim

determining what to predict and what data should be
included in the design of the method.

In the future, this method should be applied to other
biological signals, e.g. other transcriptional or transla-
tional signals in DNA/RNA or, perhaps, even protein
motifs. If larger sets of sequences can be sufficiently accu-
mulated, more complex dependencies can be more reli-
ably measured and modeled. One important future
challenge involves the development of more flexible and
sensitive approaches to the analysis of available sequence
data. This may allow for the detection of even more subtle
biological features. In the longer term, it may even be pos-
sible to construct realistic models of such complex bio-
logical processes as transcription and pre-mRNA splicing,
in silico.
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