• Title/Summary/Keyword: 5-bus system

Search Result 341, Processing Time 0.031 seconds

Simulation Study of the Bus Progression Signal System ("버스연동신호의 시뮬레이션 연구)

  • 설재훈;박창호
    • Journal of Korean Society of Transportation
    • /
    • v.5 no.2
    • /
    • pp.5-18
    • /
    • 1987
  • Buses arrive at a traffic intersection later than passenger cars by the amount of dwell time at previous bus stops. This late arrival of buses affects the total passenger delay at intersections especially in the street carrying large bus volume. The bus progression signal system in which the signal offset is given in favor of bus platoons was applied in the case area of Kangnam street in Seoul, and various effects were analyzed using the TRANSYT-7F simulation model. It was observed that the total passenger delay can be reduced significantly if the bus progression signal system is applied, and the most effective bus priority treatment is proved to be the bus progression signal system installed with exclusive bus lanes.

  • PDF

Configuration of Actuator and Sensor Interface Bus Network using PLC

  • Luu, Hoang-Minh;Park, Young-San
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.3
    • /
    • pp.318-322
    • /
    • 2014
  • A kind of field bus called Actuator and Sensor interface bus(AS-i) was designed in this paper. The configuration of AS-i network system used Application Specific Integrated Circuit(ASIC) SAP5S chip and PLC S7-200 station, which included CPU 224 and AS-i master module CP 243-2. We also created an example program for PLC S7-200 to control AS-i network. The fire and smoke detection system was made with AS-i network system that was designed. This system had got more advantages than other system such as number of stations, easy installation, wide working area, etc. And designed system can be used as a partner network for higher level field bus networks.

A Study on Advanced Location Awareness Component using Smart Phone GPS in BIS

  • Lee, Hwajeong;Koh, Jingwang;Lim, Gyugeun;Lee, Seookcheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.5
    • /
    • pp.41-47
    • /
    • 2019
  • A BIS(Bus Information System) collects, processes and analyzes information such as real-time location and operation status during bus operation. And It is a system that provides valid information to citizens, drivers, traffic centers and bus companies. Transport information system sent by an each bus is collected through GPS(Global Positioning System), DSRC(Dedicated Short Range Communications), Beacon and passed to transport information center. BIS data by collected is handled and analyzed. Next, it is transmitted to citizen, drivers and bus companies in real time. The result of 5 times simulation satisfied the test criteria(error range ${\pm}10m$) with an average error range of 3.306m, and the reliability is increased. In this paper, we propose a improved location transfer component that can provide users to quicker and more accurate location information than existing BIS using GPS of smart phone. It can be seen that reliability is improved by securing improved bus position data.

Development of Real-Time Optimal Bus Scheduling Models (실시간 버스 운행계획수립 모형 개발)

  • Kim, Wongil;Son, Bongsoo;Chung, Jin-Hyuk;Lee, Jeomho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5D
    • /
    • pp.587-595
    • /
    • 2008
  • Many studies on bus scheduling optimization have been done from the 1960s to recent years for establishing rational bus schedule plan that can improve convenience of bus passengers and minimize unnecessary runs. After 2000, as part of the Intelligent Transport Systems (ITS), the importance of the schedule management and providing schedule information through bus schedule optimization has become a big issue, and much research is being done to develop optimization models that will increase bus passenger convenience and, on the side of bus management, minimize unnecessary bus operation. The purpose of this study is to calculate the optimal bus frequency and create a timetable for each bus stop by applying DTR or DTRC model that use data for each bus stop and route segment. Model verification process was implemented using data collected from bus management system (BMS) and integrated transit-fare card system for bus route of Seoul's No. 472 line. In order to evaluate the reliability and uncertainty of optimal solution, sensitivity analysis was implemented for the various parameters and assumptions used in the bus scheduling model.

Freeway Bus-Only Lane Enforcement System Using Infrared Image Processing Technique (적외선 영상검지 기술을 활용한 고속도로 버스전용차로 단속시스템 개발)

  • Jang, Jinhwan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.67-77
    • /
    • 2022
  • An automatic freeway bus-only lane enforcement system was developed and assessed in a real-world environment. Observation of a bus-only lane on the Youngdong freeway, South Korea, revealed that approximately 99% of the vehicles violated the high-occupancy vehicle (HOV) lane regulation. However, the current enforcement by the police not only exhibits a low enforcement rate, but also induces unnecessary safety and delay concerns. Since vehicles with six passengers or higher are permitted to enter freeway bus-only lanes, identifying the number of passengers in a vehicle is a core technology required for a freeway bus-only lane enforcement system. To that end, infrared cameras and the You Only Look Once (YOLOv5) deep learning algorithm were utilized. For assessment of the performance of the developed system, two environments, including a controlled test-bed and a real-world freeway, were used. As a result, the performances under the test-bed and the real-world environments exhibited 7% and 8% errors, respectively, indicating satisfactory outcomes. The developed system would contribute to an efficient freeway bus-only lane operations as well as eliminate safety and delay concerns caused by the current manual enforcement procedures.

Experimental and Analytical Study on the Bus Duct System for the Prediction of Temperature Variations Due To the Fluctuation of Load

  • Thirumurugaveerakumar, S.;Sakthivel, M.;Valarmathi, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2036-2041
    • /
    • 2014
  • In this paper, a thermal model is developed for the bus bar system to predict the temperature variation during the transient time period and to calculate both the steady-state and transient electrical current carrying capacity (ampacity) of bus bar. The bus bar system installed in the power house of Kumaraguru College of Technology, Coimbatore has been considered. Temperature variation predicted in the modelling is validated by observing the current and steady state temperatures in different feeders of the bus bar. Magnetic field of the extreme phases R and B induces more current in the middle phase Y. Hence, the steady state temperature in the phase Y is greater than other two phases. The transient capabilities of the bus bar are illustrated by calculating the variations in the bus bar temperature when it is subjected to a step change in current during the peak hours due to increase in hostel utilities and facilities (5.30 pm to 10.30 pm). The physical and geometrical properties of the bus bar and temperature variation in the bus bar are used to estimate the thermal time constants for common bus bar cross-sections. An analytical expression for the time constant of the bus bar is derived.

Comparison of Deep Learning Algorithm in Bus Boarding Assistance System for the Visually Impaired using Deep Learning and Traffic Information Open API (딥러닝과 교통정보 Open API를 이용한 시각장애인 버스 탑승 보조 시스템에서 딥러닝 알고리즘 성능 비교)

  • Kim, Tae hong;Yeo, Gil Su;Jeong, Se Jun;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.388-390
    • /
    • 2021
  • This paper introduces a system that can help visually impaired people to board a bus using an embedded board with keypad, dot matrix, lidar sensor, NFC reader, a public data portal Open API system, and deep learning algorithm (YOLOv5). The user inputs the desired bus number through the NFC reader and keypad, and then obtains the location and expected arrival time information of the bus through the Open API real-time data through the voice output entered into the system. In addition, by displaying the bus number as the dot matrix, it can help the bus driver to wait for the visually impaired, and at the same time, a deep learning algorithm (YOLOv5) recognizes the bus number that stops in real time and detects the distance to the bus with a distance detection sensor such as lidar sensor.

  • PDF

Stabilization of nonlinear two-generator five-bus power systems using fuzzy control (퍼지제어를 이용한 비선형 2기 5모선 전력계통의 안정화)

  • Moon, Un-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.42-49
    • /
    • 2000
  • This paper presents the application of a FARMA controller to stabilization of nonlinear Two-Generator Five-Bus power Systems. The control rules and the membership functions of the FARMA controller are generated automatically without using any plant model high complexity and severe nonlinearity of power systems are introduced and two-Machine Five -Bus Power system stabilization problem is formulated. The simulation results demonstrate the effectiveness and application possibility of the FARMA controller to the control problem of high order and nonlinear plants.

  • PDF

Power System Enhanced Monitoring through Strategic PMU Placement Considering Degree of Criticality of Buses

  • Singh, Ajeet Kumar;Fozdar, Manoj
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1769-1777
    • /
    • 2018
  • This paper proposes a method for optimal placement of Phasor Measurement Units (PMUs) considering system configuration and its attributes during the planning phase of PMU deployment. Each bus of the system is assessed on four diverse attributes; namely, redundancy of measurements, rotor angle and frequency monitoring of generator buses, reactive power deficiency, and maximum loading limit under transmission line outage contingency, and a consolidated 'degree of criticality' is determined using Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). The major contribution of the proposed work is the development of modified objective function which incorporates values of the degree of criticality of buses. The problem is formulated as maximization of the aggregate degree of criticality of the system. The resultant PMU configuration extends complete observability of the system and majority of the PMUs are located on critical buses. As budgetary restrictions on utilities may not allow installation PMUs even at optimal locations in a single phase, multi-horizon deployment of PMUs is also addressed. The proposed approach is tested on IEEE 14-bus, IEEE 30-bus, New England (NE) 39-bus, IEEE 57-bus and IEEE 118-bus systems and compared with some existing methods.