• 제목/요약/키워드: 5-axis Machining Technology

검색결과 53건 처리시간 0.021초

복합재 하니콤 코어의 형상가공 특성에 관한 실험적 연구 (Experimental Study on Shape Machining Characteristics of Composite Honeycomb Core)

  • 한승우;김해지
    • 한국기계가공학회지
    • /
    • 제13권4호
    • /
    • pp.28-35
    • /
    • 2014
  • A composite honeycomb core is widely used for lightweight aircraft materials. However, the composite honeycomb core coupled with metal-cutting machining processes does not make a very good match. This paper describes an experimental study of the shape-machining characteristics of a composite honeycomb core, in which a five-axis gantry machine is used. The experimental conditions of the offset allowance, tooling condition and feed rate were applied. The shape machining characteristics of a flat surface, a vertical surface, and a concave surface are evaluated by comparing the machining shape and burr characteristics.

6축 병렬기구 공작기계의 머신 시뮬레이션과 앵글밀링헤드 적용에 관한 연구 (A Study on the Application of Machine Simulation and Angle Milling Head of a 6-Axis Parallel Kinematic Machine)

  • 이인수;김해지;김남경
    • 한국기계가공학회지
    • /
    • 제16권5호
    • /
    • pp.47-54
    • /
    • 2017
  • This study examines the implementation of a kinematic machining tool to evaluate the interference and collision phenomenon of 5-axis machining of wing ribs from airplanes, particularly for a large-size model airplane. We develop a machine simulation model of a parallel kinematic machining tool that can operate in a virtual space, which is equivalent to the authentic conditions in the field. The investigation of the simulation function elements indicates the necessity to generate the 6-axis machining, which attaches an angle head to the main axis of the machine. Using an NC program for the wing ribs, we attempt to verify the correspondence and conformity between the machine simulation model and the actual equipment.

위팔뼈 의료용 디지털 영상 및 통신 표준 영상을 이용한 5축 가공기술의 융합적 연구 (A Convergence Study on the 5-axis Machining Technology using the DICOM Image of the Humerus Bone)

  • 윤재호;지태정;윤준;김형균
    • 한국융합학회논문지
    • /
    • 제8권11호
    • /
    • pp.115-121
    • /
    • 2017
  • 의료용 디지털 영상 및 통신 표준과 5축 가공기술의 융합적 연구를 통하여 맞춤형 인공관절의 기초적 지식을 얻고자 하였다. 연구방법으로 의료영상의 위팔뼈에 대해 3차원 모델링을 생성하고 케미컬우드 소재로 형상을 가공하여 해부학적 특징과 모델링 가공 연산시간을 비교하였다. 그 결과 스테레오리소그래피 모델링이 아이제스 모델링에 비해 중삭 2배, 정삭 10배 정도로 시간이 많이 소요되었다. 5축 가공된 위팔뼈는 해부목, 큰돌기, 작은돌기, 결절사이 고랑의 해부학적 구조가 3차원 의료영상과 동일한 특징으로 나타났다. 이와 같이 위팔뼈의 외과목 언더컷 등 다양한 형태의 구조가 5축으로 가공되는 융합적 가공 기술들은 인체의 정밀한 모형을 추구하는 맞춤형 관절 제작 시 향후 적용 가능성이 높음을 알 수 있었다.

NC가공에서 허용오차를 고려한 가공속도 최적화에 관한 연구 (A Study of Feedrate Optimization for Tolerance Error of NC Machining)

  • 이희승;이철수;김종민;허은영
    • 한국생산제조학회지
    • /
    • 제22권5호
    • /
    • pp.852-858
    • /
    • 2013
  • In numerical control (NC) machining, a machining error in equipment generally occurs for a variety of reasons. If there is a change in direction in the NC code, the characteristics of the automatic acceleration or deceleration function cause an overlap of each axis of the acceleration and deceleration zones, which in turn causes a shift in the actual processing path. Many studies have been conducted for error calibration of the edge as caused by automatic acceleration or deceleration in NC machining. This paper describes a geometric interpretation of the shape and processing characteristics of the operating NC device. The paper then describes a way to determine a feedrate that achieves the desired tolerance by using linear and parabolic profiles. Experiments were conducted by the validate equations using a three-axis NC machine. The results show that the machining errors were smaller than the machine resolution. The results also clearly demonstrate that the NC machine with the developed system can successfully predict machining errors induced with a change in direction.

로터리테이블용 롤러기어캠의 5-축 가공에 관한 연구 (A Study on 5-Axis Machining of Roller Gear Cam for Rotary Table)

  • 조현덕;박종배;신용범;이광수
    • 한국기계가공학회지
    • /
    • 제16권4호
    • /
    • pp.127-134
    • /
    • 2017
  • A rotary table is a positioning device used in metalworking for the multiple axes of machine tools, and the utilization trend is increasing with machining efficiency. In the construction of a rotary table, the core technology is a power transfer unit that drives the table, typically a gear type and a roller gear cam type. As the rollers installed on the turret column have rolling movement on the contact surface of the roller gear cam, the roller gear cam type has the advantage of low wear, high load, and fast driving. Therefore, it is currently being replaced by a roller gear cam type. In this study, we researched a 5-axis machining method for the roller gear cam on a rotary table and a new method of applying double roller gear cam curve to reduce the noise and shock between the roller and the cam surface. We implemented the 5-axis machining process in this study using software to generate NC-code and machined the roller gear cams using a Mazak Integrex-200IV. We found that the roller gear cam and turret were able to identify mutual touch status and the noise from the operation of the roller gear cam was substantially reduced.

5축 머시닝센터의 소비 에너지 저감을 위한 운동요소 경량화 (Lightweight of Movable Parts for Energy Reduction of 5-axis Machining Center)

  • 이명규;남성호;이동윤
    • 한국정밀공학회지
    • /
    • 제30권5호
    • /
    • pp.474-479
    • /
    • 2013
  • Mass reduction of the machine tool movable parts is a tool for achieving lower energy demands of the machine tool operation. The realization of lightweight design in machine tool can be achieved by structural lightweight design and material lightweight design. In this study, topology optimization strategy was applied to design optimized structures of movable parts of 5 axis machining center. The weight of ram which has most significant influence on the stiffness of whole machine tool was reduced without stiffness deterioration. The redesigned optimized ram has 24.2% less weight while maintaining the same displacement caused by cutting force.

마이크로 시스템 구현을 위한 5축 가공기에 관한 연구 (A study on 5-axis Milling Machine for Micro System Manufacturing)

  • 방영봉;이경민;오승률
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.585-588
    • /
    • 2003
  • As the advance in technology requires micro mechanical systems, the production methods for micro parts are of a great interest of many researchers. Although MEMS is one of the most popular methods. it can only produce 2D microstructures. The micro manufacturing with micro-mill and micro-lathe has a great potential for producing arbitrary 3D shapes and are being researched. In this paper, a PC based 5-axis milling machine with high precision was developed. To evaluate the machine performance, micro ribs and micro columns were machined. The machining experiments of micro impeller and micro turbine blade confirmed the possibility of micro system manufacturing by using the developed milling machine.

  • PDF

고정밀 부품 가공을 위한 고유연성 머시닝센터의 특허동향 분석에 관한 연구 (Research for Patent Application Tendency in the High Reliable Machining Center for Making of Ultra Precisional Component)

  • 김성민;고준빈;박희상
    • 한국공작기계학회논문집
    • /
    • 제17권6호
    • /
    • pp.1-7
    • /
    • 2008
  • This paper research the trend of technology of the high efficient and reliability machining center and high flexibility parallel manipulator machining center including linear motor machining center, submicron machining center and direct drive 5 axis machining center using patent information of Korea, U.S.A, Japan and Europe. By using this, the technique level of Korea, the International trend of technology and condition of cooperation research was estimated and the necessity of research and development performance about the machining center for the IT part processing were inquired.

내장형 모터와 리니어 모터를 적용한 초고속 수평형 머시닝센터의 열 특성 해석 (Thermal Characteristic Analysis of a High-Speed Horizontal Machining Center with Built-in Motor and Linear Motors)

  • 김석일;조재완
    • 한국공작기계학회논문집
    • /
    • 제13권5호
    • /
    • pp.30-37
    • /
    • 2004
  • This paper presents the thermal characteristic analysis of a high-speed horizontal machining center with spindle speed of 50,000rpm and feedrate of 120m/min. The spindle system is designed based on the built-in motor, angular contact ceramic ball bearings, oil-air lubrication and oil-jacket cooling method. The X-axis and Y-axis feeding systems are composed of the linear motors and linear motion guides, and the Z-axis feeding system is composed of the servo-motor, ball screw and linear motion guides. The thermal characteristics such as the temperature distribution, temperature rise, thermal deformation and step response, are estimated based on the finite element model of machining center and the heat generation rates of heat sources related to the machine operation conditions. Especially, the thermal time constant assessed from the step response function is introduced as an index of thermal response characteristics.

실시간 NURBS 보간에 의한 동시 3차원 가공에 관한 연구 (Simultaneous 3D Machining with Real-Time NURBS Interpolation)

  • 홍원표;양민양;이응기
    • 한국정밀공학회지
    • /
    • 제19권5호
    • /
    • pp.89-94
    • /
    • 2002
  • Increasing demands on precision machining using CNC machines have necessitated that the tool to move with a position error as small as possible in 3-dimensional (3D) space. This paper presents the simultaneous 3D machining with a retrofitted PC-NC milling machine. To achieve the simultaneous 3-axis motions, a new precision interpolation algorithm for 3D Non-Uniform Rational B-Spline(NURBS) curve is used. With this accurate and efficient algorithm for the generation of complex. 3D shapes, a real-time NURBS interpolator was developed using a PC and the simultaneous 3D machining is accomplished.