• 제목/요약/키워드: 5-axis Cutting

검색결과 83건 처리시간 0.029초

Nutating 헤드 타입 5축 CNC 레이저 절단기용 동작 시뮬레이터 (Cutting Motion Simulator for Nutating Head Type S-axis CNC Laser Cutting Machine)

  • 강재관
    • 산업경영시스템학회지
    • /
    • 제34권3호
    • /
    • pp.35-40
    • /
    • 2011
  • 5-axis laser cutting has great advantages when it is applied to three dimensional machining requiring high cutting quality. For developing 5-axis CNC laser cutting systems, however, many problems such as rotating a laser head or a working table, 5-axis servo-control mechanism, tool path generation and post-processing, and collision avoidance between a laser head and a work-piece should be solved. In this paper, we deal with developing a motion simulator for 5-axis laser cutting machine with a nutating cutting head whose rotational axis is in an inclined plane. Two essential modules such as post-processor and cutting motion simulator was developed based on a commercial 3D CAD of UG-NX. The developed system was applied to three dimensional cutting products and showed the validity of the developed methods.

5축 레이저 절단기용 포스트프로세서 및 절단 모션 시뮬레이터 개발 (Development of Post-Processor and Cutting Motion Simulator for 5-axis CNC Laser Cutting Machine)

  • 강재관
    • 한국기계가공학회지
    • /
    • 제8권4호
    • /
    • pp.7-13
    • /
    • 2009
  • Five-axis laser cutting has great advantages when it is applied to 3-dimensional machining requiring high cutting quality. For developing 5-axis CNC laser cutting systems, however, many problems such as rotating a laser head or a working table, 5-axis servo-control mechanism, tool path generation and post processing, and collision avoidance between a laser head and a work-piece should be solved. In this paper, we deal with developing a dedicated CAM system based on UG-NX3 for 5-axis laser cutting machine. Two essential modules such as post-processor and cutting motion simulation was developed. The developed system was applied to cutting curve defined on 3-D workpiece in order to show the validity of the proposed methods.

  • PDF

룰드 곡면으로 된 임펠러의 5축 황삭 가공에 관한 연구 (A Study on Five-Axis Roughing of Impeller with Ruled Surface)

  • 장동규;임기남;양균의
    • 한국정밀공학회지
    • /
    • 제24권7호
    • /
    • pp.60-68
    • /
    • 2007
  • This paper presents an efficient 5-axis roughing method for centrifugal impeller. The efficient roughing is minimization of cutting time through minimizing tool tilting and rotating motions. To minimized cutting time, machining area is divided into sub-cutting regions using control points on hub curves and shroud curves of blade used to design and analyze centrifugal impeller. For sub-cutting regions, diameters of cutting tools are determined as big as possible. Then, tool paths are generated with the tilting axis and rotating axis of 5-axis machine limited and fixed, which can give more efficient machining speed and machining stability than the conventional methods. Experimental results show that the proposed method is more efficient than the conventional methods to mill with the only one cutting tool without dividing area and the previous methods to mill with simultaneous 5-axis processing with dividing area.

Automatic NC-Date Generation Method for 5-axis Cutting of Turbine-Blades by Finding Safe Heel-Angles and Adaptive

  • Piao, Cheng-Dao;Lee, Cheol-Soo;Cho, Kyu-Zong;Park, Gwang--Ryeol
    • Journal of Mechanical Science and Technology
    • /
    • 제18권5호
    • /
    • pp.753-761
    • /
    • 2004
  • In this paper, an efficient method for generating 5-axis cutting data for a turbine blade is presented. The interference elimination of 5-axis cutting currently is very complicated, and it takes up a lot of time. The proposed method can generate an interference-free tool path, within an allowance range. Generating the cutting data just point to the cutting process and using it to obtain NC data by calculating the feed rate, allows us to maintain the proper feed rate of the 5-axis machine. This paper includes the algorithms for: (1) CL data generation by detecting an interference-free heel angle, (2) finding the optimal tool path interval considering the cusp-height, (3) finding the adaptive feed rate values for each cutter path, and (4) the inverse kinematics depending on the structure of the 5-axis machine, for generating the NC data.

5축 CO2 레이저 컷팅 머신 및 CAM 시스템 개발 (Development of 5-axis $CO_2$ Laser Cutting Machine and CAM)

  • 강재관;염경섭;강병수;이홍주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.245-246
    • /
    • 2006
  • For developing 5-axis laser cutting systems, many problems such as rotating of laser head or table, 5-axis tool path generation and collision avoidance between laser head and product should be solved. In this paper, a five-axis laser cutting machine with table swivel and rotary type configuration is developed. The five axes (X,Y,Z,A,B) are controlled and interfaced to PC via MMC board. Two kinds of CAM S/W such as commercial 5-axis CAM S/W(Euclid) and UG-API are engaged to generate NC code for the developed 5-axis laser cutting machine.

  • PDF

반응표면법을 이용한 5축 임펠러 정삭 가공의 최적화 (Optimization of Finish Cutting Condition of Impeller with Five-Axis Machine by Response Surface Method)

  • 임표;양균의
    • 대한기계학회논문집A
    • /
    • 제31권9호
    • /
    • pp.924-933
    • /
    • 2007
  • An impeller is a important part of turbo-machinery. It has a set of twisted surfaces because it consists of many blades. Five-axis machining is required to produce a impeller because of interference between tool and workpiece. It can obtain good surface integrity and high productivity. This paper proposes finish cutting method for machining impeller with 5-axis machining center and optimization of cutting condition by response surface method. Firstly, cutting methods are selected by consideration of operation characteristics. Secondly, response factors are determined as cutting time and cutting error for prediction of productivity. Experiments are projected by central composite design with axis point. Thirdly, regression linear models are estimated as single surface in the leading edge and as dual surface in the hub surface cutting. Finally, cutting conditions are optimized.

임펠러의 효율적인 5축 NC 가공에 관한 연구 (A Study on Efficient Machining of Impeller with 5-axis NC Machine)

  • 조환영;이희관;공영식;양균의
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.399-404
    • /
    • 2002
  • An efficient method of machining impeller is presented. In the roughing process, the cutting area is divided into two regions to reduce cutting time and select cutting tools. The regions are determined by characteristic point on the geometry of impeller blade. Then, the tool of the maximum radius is selected in each area. Tool interference in cutting areas is avoided by checking the intersection between cooing tool axis and ruling line on blade surface.

  • PDF

공구 끝의 일정한 절삭속도를 위한 5축 NC 가공 데이터의 이송속도 산출 (Calculating the Feedrate of 5-Axis NC Machining Data for the Constant Cutting Speed at a CL-point)

  • 이철수;이제필
    • 한국CDE학회논문집
    • /
    • 제6권2호
    • /
    • pp.69-77
    • /
    • 2001
  • This paper describes a method of calculating the feedrate for the constant cutting speed at a CL-point in 5-axis machining. Unlike 3-axis machining, 5-axis machining has the flexibility of the tool motions due to two rotation axes. But the feedrate at joint space differs from the feedrate at a tool tip(the CL-point) of the 3D Euclidean space for the tool motions. The proposed algorithm adjusts the feedrate based on 5-axis NC data, the kinematics of a machine, and the tool length. The following calculations is processed for each NC block to generate the new feedrate; 1) calculating the moving distance at the CL-point, 2) calculating the moving time by the given feedrate, 3) calculating the feedrate of each axis, 4) getting the new feedrate. The proposed algorithm was applied to a 5-axis machine which had a tilting spindle and a rotary table. Totally, the result of the algorithm reduced the machining time and smoothed the cutting-load by the constant cutting speed at the CL-point.

  • PDF

금형의 5축 고속가공에서 공구 틸팅각에 따른 절삭력에 표면거칠기 특성 (The Characteristics of Cutting Force and Surface Roughness According to Tool Tilting Angle in 5-axis High Speed Machining of Molds)

  • 강익수;김정석;김석원;이기용
    • 한국공작기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.63-69
    • /
    • 2007
  • The high speed machining has been widely applied to manufacture dies and machine elements in industrial field. Especially, 5-axis milling has been employed to produce a wide range of turbine blades, impellers and complex molds. In this study, the machining characteristics of injection molds were investigated according to tool tilting angles in 5-axis milling. The cutting force and surface roughness were investigated with various tool tilting angles. When the tool tilting angle was over than 10 degree, the characteristics of cutting force and surface roughness were improved in machining of Al alloy.