• Title/Summary/Keyword: 5-Azacytidine

Search Result 25, Processing Time 0.02 seconds

Direct reprogramming of fibroblasts into diverse lineage cells by DNA demethylation followed by differentiating cultures

  • Yang, Dong-Wook;Moon, Jung-Sun;Ko, Hyun-Mi;Shin, Yeo-Kyeong;Fukumoto, Satoshi;Kim, Sun-Hun;Kim, Min-Seok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.6
    • /
    • pp.463-472
    • /
    • 2020
  • Direct reprogramming, also known as a trans-differentiation, is a technique to allow mature cells to be converted into other types of cells without inducing a pluripotent stage. It has been suggested as a major strategy to acquire the desired type of cells in cell-based therapies to repair damaged tissues. Studies related to switching the fate of cells through epigenetic modification have been progressing and they can bypass safety issues raised by the virus-based transfection methods. In this study, a protocol was established to directly convert fully differentiated fibroblasts into diverse mesenchymal-lineage cells, such as osteoblasts, adipocytes, chondrocytes, and ectodermal cells, including neurons, by means of DNA demethylation, immediately followed by culturing in various differentiating media. First, 24 h exposure of 5-azacytidine (5-aza-CN), a well-characterized DNA methyl transferase inhibitor, to NIH-3T3 murine fibroblast cells induced the expression of stem-cell markers, that is, increasing cell plasticity. Next, 5-aza-CN treated fibroblasts were cultured in osteogenic, adipogenic, chondrogenic, and neurogenic media with or without bone morphogenetic protein 2 for a designated period. Differentiation of each desired type of cell was verified by quantitative reverse transcriptase-polymerase chain reaction/western blot assays for appropriate marker expression and by various staining methods, such as alkaline phosphatase/alizarin red S/oil red O/alcian blue. These proposed procedures allowed easier acquisition of the desired cells without any transgenic modification, using direct reprogramming technology, and thus may help make it more available in the clinical fields of regenerative medicine.

Observation of Mitotic Chromosome behavior according to Different Treatment Methods of DNA Methylation Inhibitor

  • Seong-Wook Kang;Ji-Yoon Han;Seong-Woo Cho
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.221-221
    • /
    • 2022
  • Chromosome breakage occurred by DNA methylation inhibitor. Zebularine is known as DNA methylation inhibitor and suitable for water solubility among different DNA methylation inhibitors as 5-Azacytidine and 5-aza-2'-deoxycytidine. We used zebularine as mutagen according to different methods by roots absorption and seed imbibition. After zebularine treatment, DNA methylation inhibitor, we observed mitotic chromosome behavior what is different according to two different treatment methods. First, seed imbibition treatment in 1,000 μM of zebularine solution for 72 hours in dark conditions. The second treatment to seedlings of Keumkang was also treated in 1,000 μM of zebularine solution for 72 hours after germination. Root and shoot showed different elongations in each treatment. Root absorption treatment(3.01±0.48, 2.00±0.26) showed the shortest elongation in root and shoot than control(8.16±0.61, 4.03±0.48) and seed imbibition treatment(4.33±0.80, 2.48±0.36). It can be explained root tip meristematic cell activity was damaged by DNA methylation inhibitor. Primary root tips were collected in DW for 24 hours at low temperature(0℃) and fixed in fixation solution for 3 days to chromosome observation in mitosis. Mitotic index, chromosome structure and chromosome aberration were observed by phase-contrast microscope. Mitotic index of the control(0.29) showed twice mitotic cells as the treated groups(imbibition 0.15, absorption 0.14). Observation of chromosomes showed some short chromosomes and loosen chromosomes affected by zebularine. It is considered because of zebularine damage DNA in mitosis. We observed "gap by chromosome breakage" in chromosomes that have loose parts between centromere and telomere. It seems demethylation of zebularine occurs chromosome breakage.

  • PDF

Cloning and characterization of a novel gene with alternative splicing in murine mesenchymal stem cell line C3H/10T1/2 by gene trap screening

  • Wang, Mingke;Sun, Huiqin;Jiang, Fan;Han, Jing;Ye, Feng;Wang, Tao;Su, Yongping;Zou, Zhongmin
    • BMB Reports
    • /
    • v.43 no.12
    • /
    • pp.789-794
    • /
    • 2010
  • A novel gene, designated mgt-6, containing four splicing variants, was isolated from a gene trap clone library of C3H/10T1/2 cells transfected with retroviral promoterless gene-trap vector, ROSAFARY. The transcript variants were differentially expressed in murine tissues and cell lines and differentially responded to diverse stimuli including TGF-${\beta}1$ and mitogen-activated protein kinase (MAPK) inhibitors. The mgt-6 gene encoded a protein of 37 or 11 amino acid residuals with cytoplasmic distribution. However, when C3H/10T1/2 cells were treated with 5-azacytidine, the protein translocated into cell nucleus as indicated by fused LacZ or C-terminally tagged EGFP. Our preliminary results suggest that further study on the role of mgt-6 gene in cell transformation and differentiation may be of significance.

Effect of Extrinsic Factors on Differentiated Cardiomyocyte-like Cells from Human Embryonic Stem Cells

  • Gil, Chang-Hyun;Jang, Jae-Woo;Lee, Won-Young;Park, Ze-Won;Lee, Jae-Ho;Chung, Sun-Hwa;Chae, Jung-Il;Chung, Hyung-Min
    • Reproductive and Developmental Biology
    • /
    • v.33 no.4
    • /
    • pp.263-271
    • /
    • 2009
  • Cardiovascular diseases (CVDs) are one of the most cause of death around the world and fields of interest for cardiac stem cells. Also, current use of terminally differentiated adult cardiomyocytes for CVDs has limited regenerative capacity therefore any significant cell loss may result in the development of progressive heart failure. Human embryonic stem cells (hESCs) derived from blastocyst-stage embryos spontaneously have ability to differentiate via embryo-like aggregates (endoderm, ectoderm and mesoderm) in vitro into various cell types including cardiomyocyte. However, most effective molecule or optimized condition which can induce cardiac differentiation of hESCs is rarely studied. In this study, we developed both spontaneous and inductive cardiomyocyte-like cells differentiation from hESCs by treatment of induced-factors, 5-azacytidine, BMP-4 and cardiogenol C. On the one hand, spontaneous and inductive cardiomyocyte-like cells showed that cardiac markers are expressed for further analysis by RT-PCR and immunocytochemistry. Interestingly, BMP-4 greatly improved homogeneous population of the cardiomyocyte-like cells from hESCs CHA15 and H09. In conclusion, we verified that spontaneously differentiated cells showed cardiac specific markers which characterize cardiac cells, treated extrinsic factors can manage cellular signals and found that hESCs can undergo differentiation into cardiomyocytes better than spontaneous group. This finding offers an insight into the inductive factor of differentiated cardiomyocytes and provides some helpful information that may offer the potential of cardiomyocytes derived from hESCs using extrinsic factors.

Transdifferentiation of α-1,3-galactosyltransferase knockout pig bone marrow derived mesenchymal stem cells into pancreatic β-like cells by microenvironment modulation

  • Ullah, Imran;Lee, Ran;Oh, Keon Bong;Hwang, Seongsoo;Kim, Youngim;Hur, Tai-Young;Ock, Sun A
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.11
    • /
    • pp.1837-1847
    • /
    • 2020
  • Objective: To evaluate the pancreatic differentiation potential of α-1,3-galactosyltransferase knockout (GalTKO) pig-derived bone marrow-derived mesenchymal stem cells (BM-MSCs) using epigenetic modifiers with different pancreatic induction media. Methods: The BM-MSCs have been differentiated into pancreatic β-like cells by inducing the overexpression of key transcription regulatory factors or by exposure to specific soluble inducers/small molecules. In this study, we evaluated the pancreatic differentiation of GalTKO pig-derived BM-MSCs using epigenetic modifiers, 5-azacytidine (5-Aza) and valproic acid (VPA), and two types of pancreatic induction media - advanced Dulbecco's modified Eagle's medium (ADMEM)-based and N2B27-based media. GalTKO BM-MSCs were treated with pancreatic induction media and the expression of pancreas-islets-specific markers was evaluated by real-time quantitative polymerase chain reaction, Western blotting, and immunofluorescence. Morphological changes and changes in the 5'-C-phosphate-G-3' (CpG) island methylation patterns were also evaluated. Results: The expression of the pluripotent marker (POU class 5 homeobox 1 [OCT4]) was upregulated upon exposure to 5-Aza and/or VPA. GalTKO BM-MSCs showed increased expression of neurogenic differentiation 1 in the ADMEM-based (5-Aza) media, while the expression of NK6 homeobox 1 was elevated in cells induced with the N2B27-based (5-Aza) media. Moreover, the morphological transition and formation of islets-like cellular clusters were also prominent in the cells induced with the N2B27-based media with 5-Aza. The higher insulin expression revealed the augmented trans-differentiation ability of GalTKO BM-MSCs into pancreatic β-like cells in the N2B27-based media than in the ADMEM-based media. Conclusion: 5-Aza treated GalTKO BM-MSCs showed an enhanced demethylation pattern in the second CpG island of the OCT4 promoter region compared to that in the GalTKO BM-MSCs. The exposure of GalTKO pig-derived BM-MSCs to the N2B27-based microenvironment can significantly enhance their trans-differentiation ability into pancreatic β-like cells.