Effect of Extrinsic Factors on Differentiated Cardiomyocyte-like Cells from Human Embryonic Stem Cells

  • Gil, Chang-Hyun (Graduate School of Life Science, CHA Stem Cell Institute, College of Medicine, CHA University) ;
  • Jang, Jae-Woo (Graduate School of Life Science, CHA Stem Cell Institute, College of Medicine, CHA University) ;
  • Lee, Won-Young (CHA Bio & Diostech Co., Ltd.) ;
  • Park, Ze-Won (Graduate School of Life Science, CHA Stem Cell Institute, College of Medicine, CHA University) ;
  • Lee, Jae-Ho (CHA Bio & Diostech Co., Ltd.) ;
  • Chung, Sun-Hwa (Graduate School of Life Science, CHA Stem Cell Institute, College of Medicine, CHA University) ;
  • Chae, Jung-Il (Graduate School of Life Science, CHA Stem Cell Institute, College of Medicine, CHA University) ;
  • Chung, Hyung-Min (Graduate School of Life Science, CHA Stem Cell Institute, College of Medicine, CHA University)
  • Published : 2009.12.31

Abstract

Cardiovascular diseases (CVDs) are one of the most cause of death around the world and fields of interest for cardiac stem cells. Also, current use of terminally differentiated adult cardiomyocytes for CVDs has limited regenerative capacity therefore any significant cell loss may result in the development of progressive heart failure. Human embryonic stem cells (hESCs) derived from blastocyst-stage embryos spontaneously have ability to differentiate via embryo-like aggregates (endoderm, ectoderm and mesoderm) in vitro into various cell types including cardiomyocyte. However, most effective molecule or optimized condition which can induce cardiac differentiation of hESCs is rarely studied. In this study, we developed both spontaneous and inductive cardiomyocyte-like cells differentiation from hESCs by treatment of induced-factors, 5-azacytidine, BMP-4 and cardiogenol C. On the one hand, spontaneous and inductive cardiomyocyte-like cells showed that cardiac markers are expressed for further analysis by RT-PCR and immunocytochemistry. Interestingly, BMP-4 greatly improved homogeneous population of the cardiomyocyte-like cells from hESCs CHA15 and H09. In conclusion, we verified that spontaneously differentiated cells showed cardiac specific markers which characterize cardiac cells, treated extrinsic factors can manage cellular signals and found that hESCs can undergo differentiation into cardiomyocytes better than spontaneous group. This finding offers an insight into the inductive factor of differentiated cardiomyocytes and provides some helpful information that may offer the potential of cardiomyocytes derived from hESCs using extrinsic factors.

Keywords

References

  1. Ahn SE, Kim S, Park KH, Moon SH, Lee HJ, Kim GJ, Lee YJ, Park KH, Cha KY, Chung HM (2006): Primary bone-derived cells induce osteogenic differentiation without exogenous factors in human embryonic stem cells. Biochem Biophys Res Commun 340:403-408 https://doi.org/10.1016/j.bbrc.2005.12.020
  2. Beqqali A, van Eldik W, Mummery C, Passier R (2009): Human stem cells as a model for cardiac differentiation and disease. Cell Mol Life Sci 66:800- 813 https://doi.org/10.1007/s00018-009-8476-0
  3. Boheler KR, Czyz J, Tweedie D, Yang HT, Anisimov SV, Wobus AM (2002): Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res 91:189-201 https://doi.org/10.1161/01.RES.0000027865.61704.32
  4. Bruce SJ, Gardiner BB, Burke LJ, Gongora MM, Grimmond SM, Perkins AC (2007): Dynamic transcription programs during ES cell differentiation towards mesoderm in serum versus serum-free BMP4 culture. BMC Genomics 8:365 https://doi.org/10.1186/1471-2164-8-365
  5. Cui L, Johkura, K, Takei, S, Ogiwara N, Sasaki K (2007): Structural differentiation, proliferation, and association of human embryonic stem cell-derived cardiomyocytes in vitro and in their extracardiac tissues. J Struct Biol 158:307-317 https://doi.org/10.1016/j.jsb.2006.11.009
  6. Doll D, Sarikas A, Krajcik R, Zolk O (2007): Proteomic expression analysis of cardiomyocytes subjected to proteasome inhibition. Biochem Biophys Res Commun 353:436-442 https://doi.org/10.1016/j.bbrc.2006.12.039
  7. Doss MX, Sachinidis A, Hescheler J (2008): Human ES cell derived cardiomyocytes for cell replacement therapy: a current update. Chin J Physiol 51:226- 229
  8. El-Bizri N, Guignabert C, Wang L, Cheng A, Stankunas K, Chang CP, Mishina Y, Rabinovitch M (2008): SM22 alpha-targeted deletion of bone morphogenetic protein receptor 1A in mice impairs cardiac and vascular development, and influences organogenesis. Development 135:2981-2991 https://doi.org/10.1242/dev.017863
  9. Evans MJ, Kaufman MH (1981): Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154-296 https://doi.org/10.1038/292154a0
  10. Freund C, Mummery CL (2009): Prospects for pluripotent stem cell-derived cardiomyocytes in cardiac cell therapy and as disease models. J Cell Biochem 107:592-599 https://doi.org/10.1002/jcb.22164
  11. Gai H, Leung EL, Costantino PD, Aguila JR, Nguyen DM, Fink LM, Ward DC, Ma Y (2009): Generation and characterization of functional cardiomyocytes using induced pluripotent stem cells derived from human fibroblasts. Cell Biol Int 33:1184-1193 https://doi.org/10.1016/j.cellbi.2009.08.008
  12. Ge D, Liu X, Li L, Wu J, Tu Q, Shi Y, Chen H (2009): Chemical and physical stimuli induce cardiomyocyte differentiation from stem cells. Biochem Biophys Res Commun 381:317-321 https://doi.org/10.1016/j.bbrc.2009.01.173
  13. Gepstein L (2008): Experimental molecular and stem cell therapies in cardiac electrophysiology. Ann N Y Acad Sci 1123:224-231 https://doi.org/10.1196/annals.1420.025
  14. Gerecht-Nir SG, David R, Zaruba M, Franz WM, Itskovitz-Eldor J (2003): Human embryonic stem cells for cardiovascular repair. Cardiovasc Res 58:313- 323 https://doi.org/10.1016/S0008-6363(03)00264-5
  15. Gerecht-Nir SG, Itskovitz-Eldor J (2004): Human embryonic stem cells: a potential source for cellular therapy. Am J Transplant 4:51-57 https://doi.org/10.1111/j.1600-6135.2004.0345.x
  16. Goldman BI, Wurzel J (1992): Effects of subcultivation and culture medium on differentiation of human fetal cardiac myocytes. In Vitro Cell Dev Biol 28A:109-119 https://doi.org/10.1007/BF02631014
  17. Goldmann WH (2000): Binding of tropomyosin-troponin to actin increases filament bending stiffness. Biochem Biophys Res Commun 276:1225-1228 https://doi.org/10.1006/bbrc.2000.3608
  18. Goumans MJ, de Boer TP, Smits AM, van Laake LW, van Vliet P, Metz CH, Korfage TH, Kats KP, Hochstenbach R, Pasterkamp G, Verhaar MC, van der Heyden MA, de Kleijn D, Mummery CL, van Veen TA, Sluijter JP, Doevendans PA (2007): TGF- beta1 induces efficient differentiation of human cardiomyocyte progenitor cells into functional cardiomyocytes in vitro. Stem Cell Res 1:138-149 https://doi.org/10.1016/j.scr.2008.02.003
  19. He JQ, Ma Y, Lee Y, Thomson JA, Kamp TJ (2003): Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ Res 93:32-39 https://doi.org/10.1161/01.RES.0000080317.92718.99
  20. tskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, Soreq H, Benvenisty N (2000): Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 6:88-95
  21. Jones PA, Taylor SM (1980): Cellular differentiation, cytidine analogs and DNA methylation. Cell 20: 85-93 https://doi.org/10.1016/0092-8674(80)90237-8
  22. Kehat I, Gepstein L (2003): Human embryonic stem cells for myocardial regeneration. Heart Fail Rev 8:229-236 https://doi.org/10.1023/A:1024709332039
  23. Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A, Livne E, Binah O, Itskovitz-Eldor J, Gepstein L (2001): Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108: 407-414 https://doi.org/10.1172/JCI200112131
  24. Kehat I, Khimovich L, Caspi O, Gepstein A, Shofti R, Arbel G, Huber I, Satin J, Itskovitz-Eldor J, Gepstein L (2004): Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol 22:1282-1289 https://doi.org/10.1038/nbt1014
  25. Lazarides E (1980): Intermediate filaments as mechanical integrators of cellular space. Nature 283:249- 256 https://doi.org/10.1038/283249a0
  26. Lehman W, Hatch V, Korman V, Rosol M, Thomas L, Maytum R, Geeves MA, Van Eyk JE, Tobacman LS, Craig R (2000): Tropomyosin and actin isoforms modulate the localization of tropomyosin strands on actin filaments. J Mol Biol 302:593-606 https://doi.org/10.1006/jmbi.2000.4080
  27. Lepore JJ, Cheng L, Min Lu M, Mericko PA, Morrisey EE, Parmacek MS (2005): High-efficiency somatic mutagenesis in smooth muscle cells and cardiac myocytes in SM22alpha-Cre transgenic mice. Genesis 41:179-184 https://doi.org/10.1002/gene.20112
  28. Li RK, Mickle DA, Weisel RD, Mohabeer MK, Zhang J, Rao V, Li G, Merante F, Jia ZQ (1997): Natural history of fetal rat cardiomyocytes transplanted into adult rat myocardial scar tissue. Circulation 96:II-179-86; discussion 186-187
  29. Monzen K, Hiroi Y, Kudoh S, Akazawa H, Oka T, Takimoto E, Hayashi D, Hosoda T, Kawabata M, Miyazono K, Ishii S, Yazaki Y, Nagai R, Komuro I (2001): Smads, TAK1, and their common target ATF- 2 play a critical role in cardiomyocyte differentiation. J Cell Biol 153:687-698 https://doi.org/10.1083/jcb.153.4.687
  30. Monzen K, Shiojima I, Hiroi Y, Kudoh S, Oka T, Takimoto E, Hayashi D, Hosoda T, Habara-Ohkubo A, Nakaoka T, Fujita T, Yazaki Y, Komuro I (1999): Bone morphogenetic proteins induce cardiomyocyte differentiation through the mitogen-activated protein kinase kinase kinase TAK1 and cardiac transcription factors Csx/Nkx-2.5 and GATA-4. Mol Cell Biol 19:7096-7105
  31. Mummery C, Ward D, van den Brink CE, Bird SD, Doevendans PA, Opthof T, Brutel de la Riviere A, Tertoolen L, van der Heyden M, Pera M (2002): Cardiomyocyte differentiation of mouse and human embryonic stem cells. J Anat 200:233-242 https://doi.org/10.1046/j.1469-7580.2002.00031.x
  32. Murry CE, Keller G (2008): Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132:661- 680 https://doi.org/10.1016/j.cell.2008.02.008
  33. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001): Bone marrow cells regenerate infarcted myocardium. Nature 410:701-705 https://doi.org/10.1038/35070587
  34. Pal R, Khanna A (2007): Similar pattern in cardiac differentiation of human embryonic stem cell lines, BG01V and ReliCellhES1, under low serum concentration supplemented with bone morphogenetic protein-2. Differentiation 75:112-122 https://doi.org/10.1111/j.1432-0436.2006.00123.x
  35. Parkes JG, Liu Y, Sirna JB, Templeton DM (2000): Changes in gene expression with iron loading and chelation in cardiac myocytes and non-myocytic fibroblasts. J Mol Cell Cardiol 32:233-246 https://doi.org/10.1006/jmcc.1999.1068
  36. Passier R, Mummery C (2005): Cardiomyocyte differentiation from embryonic and adult stem cells. Curr Opin Biotechnol 16:498-502 https://doi.org/10.1016/j.copbio.2005.08.003
  37. Passier R, Oostwaard DW, Snapper J, Kloots J, Hassink RJ, Kuijk E, Roelen B, de la Riviere AB, Mummery C (2005): Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures. Stem Cells 23:772-780 https://doi.org/10.1634/stemcells.2004-0184
  38. Pawlak A, Gil RJ (2007): Desmin--an important structural protein of a cardiac myocyte. Kardiol Pol 65:303-309
  39. Pease S, Braghetta P, Gearing D, Grail D, Williams RL (1990): Isolation of embryonic stem (ES) cells in media supplemented with recombinant leukemia inhibitory factor (LIF). Dev Biol 141:344-352 https://doi.org/10.1016/0012-1606(90)90390-5
  40. Schlange T, Andree B, Arnold HH, Brand T (2000): BMP2 is required for early heart development during a distinct time period. Mech Dev 91:259-270 https://doi.org/10.1016/S0925-4773(99)00311-1
  41. Schuh A, Breuer S, Al Dashti R, Sulemanjee N, Han rath P, Weber C, Uretsky BF, Schwarz ER (2005): Administration of vascular endothelial growth factor adjunctive to fetal cardiomyocyte transplantation and improvement of cardiac function in the rat model. J Cardiovasc Pharmacol Ther 10:55-66 https://doi.org/10.1177/107424840501000107
  42. Solter D, Shevinsky L, Knowles BB, Strickland S (1979): The induction of antigenic changes in a teratocarcinoma stem cell line (F9) by retinoic acid. Dev Biol 70:515-521 https://doi.org/10.1016/0012-1606(79)90043-5
  43. Spradling A, Drummond-Barbosa D, Kai T (2001): Stem cells find their niche. Nature 414:98-104 https://doi.org/10.1038/35102160
  44. Takei S, Ichikawa H, Johkura K, Mogi A, No H, Yoshie S, Tomotsune D, Sasaki K. (2009): Bone morphogenetic protein-4 promotes induction of cardiomyocytes from human embryonic stem cells in serum-based embryoid body development. Am J Physiol Heart Circ Physiol 296: H1793-803 https://doi.org/10.1152/ajpheart.01288.2008
  45. Taylor DA, Atkins BZ, Hungspreugs P, Jones TR, Reedy MC, Hutcheson KA, Glower DD, Kraus WE (1998): Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med 4:929-933 https://doi.org/10.1038/nm0898-929
  46. aylor SM, Jones PA (1979): Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell 17:771-779 https://doi.org/10.1016/0092-8674(79)90317-9
  47. Taylor SM, Jones PA (1982): Changes in phenotypic expression in embryonic and adult cells treated with 5-azacytidine. J Cell Physiol 111:187- 194 https://doi.org/10.1002/jcp.1041110210
  48. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998): Embryonic stem cell lines derived from human blastocysts. Science 282:1145-1147 https://doi.org/10.1126/science.282.5391.1145
  49. Tran TH, Wang X, Browne C, Zhang Y, Schinke M, Izumo S, Burcin M (2009): Wnt3a-induced mesoderm formation and cardiomyogenesis in human embryonic stem cells. Stem Cells 27:1869-1878 https://doi.org/10.1002/stem.95
  50. Van den Brule FA, Fernandez PL, Buicu C, Liu FT, Jackers P, Lambotte R, Castronovo V (1997): Differential expression of galectin-1 and galectin-3 during first trimester human embryogenesis. Dev Dyn 209:399-405 https://doi.org/10.1002/(SICI)1097-0177(199708)209:4<399::AID-AJA7>3.0.CO;2-D
  51. Xu C, Police S, Rao N, Carpenter MK (2002): Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res 91:501-508 https://doi.org/10.1161/01.RES.0000035254.80718.91
  52. Wu X, Ding S, Ding Q, Gray NS, Schultz PG (2004): Small molecules that induce cardiomyogenesis in embryonic stem cells. J Am Chem Soc 126:1590- 1591 https://doi.org/10.1021/ja038950i
  53. Yoon BS, Yoo SJ, Lee JE, You S, Lee HT, Yoon HS (2006): Enhanced differentiation of human embryonic stem cells into cardiomyocytes by combining hanging drop culture and 5-azacytidine treatment. Differentiation 74:149-159 https://doi.org/10.1111/j.1432-0436.2006.00063.x