• Title/Summary/Keyword: 5 V cathode

Search Result 303, Processing Time 0.024 seconds

ITO-Ag NW based Transparent Quantum Dot Light Emitting Diode (ITO-Ag NW기반 투명 양자점 발광 다이오드)

  • Kang, Taewook;Kim, Hyojun;Jeong, Yongseok;Kim, Jongsu
    • Korean Journal of Materials Research
    • /
    • v.30 no.8
    • /
    • pp.421-425
    • /
    • 2020
  • A transparent quantum dot (QD)-based light-emitting diode (LED) with silver nanowire (Ag NW) and indium-tin oxide (ITO) hybrid electrode is demonstrated. The device consists of an Ag NW-ITO hybrid cathode (-), zinc oxide, poly (9-vinylcarbazole) (PVK), CdSe/CdZnS QD, tungsten trioxide, and ITO anode (+). The device shows pure green-color emission peaking at 548 nm, with a narrow spectral half width of 43 nm. Devices with hybrid cathodes show better performances, including higher luminance with higher current density, and lower threshold voltage of 5 V, compared with the reference device with a pure Ag NW cathode. It is worth noting that our transparent device with hybrid cathode exhibits a lifetime 9,300 seconds longer than that of a device with Ag NW cathode. This is the reason that the ITO overlayer can protect against oxidization of Ag NW, and the Ag NW underlayer can reduce the junction resistance and spread the current efficiently. The hybrid cathode for our transparent QD LED can applicable to other quantum structure-based optical devices.

Effect of Electrode Structures on Electron Emission of the $Pb(Zr_{0.56}Ti_{0.44})O_3$ Ferroelectric Cathode ($Pb(Zr_{0.56}Ti_{0.44})O_3$ 강유전체 음극의 전극 모형에 따른 전자 방출 특성)

  • Seo, Min-Su;Hong, Ki-Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.699-707
    • /
    • 2010
  • Electric-field-induced electron emission from the three kinds of $Pb(Zr_{0.56}Ti_{0.44})O_3$ ferroelectric cathodes with different electrode structure has been investigated. Regardless of the electrode structures, a threshold field of the each cathode was 2.5-2.6kV/mm, which is 3 times higher than the coercive field of $Pb(Zr_{0.56}Ti_{0.44})O_3$ material. Although the waveform of the electron currents was affected by the structure of the electrode, no significant difference for the emission properties such as the peak current and the pulse width was observed from the three kinds of the cathodes. However, the current density of the cathode was dependent on the electrode structure. From the simulation of electric field distribution, the surface flashover, and the injury region of the cathode surface, it was proved that the prime electrons were initiated at the electrode-ceramic-vacuum triple point by field emission and the emission currents were strongly enhanced by the surface plasma.

Design LixV2O5 Cathode Structure for Effective Lithium Ion Intercalation (리튬 이차전지 양극재 LixV2O5의 효율적인 방전을 위한 구조 설계)

  • Park, Jun Kyu;Kim, Soo Il;Kim, Dongchoul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.7
    • /
    • pp.589-594
    • /
    • 2014
  • Recently, higher capacity and energy density of lithium ion batteries are increasingly demanded for enhancing their performance in view of the rise in the commercial distribution of electric and hybrid vehicles. Computational analysis of a porous structure of vanadium pentoxide cathode was performed, employing a phase field model. The incipient model was designed as a spherical structure with cylindrical-shaped pores. Modifying the diameters and lengths of the pore cylinder and the number of pores, we considered different conditions for the porous vanadium pentoxide cathodes for analyzing their effect on the amount of lithium ion intercalated to them. Subsequently, we optimized the porous structure to contain the largest amount of intercalated lithium ion during discharge.

The First Discharge Characteristics of PAn/Li-Al Secondary Battery (PAn/Li-Al 2차전지의 초기방전특성)

  • Moon, Seong-In;Yun, Mun-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.207-210
    • /
    • 1990
  • The purpose of this study is to research and develop polymer secondary battery. This paper describes the first discharge characteristics of PAn/Li-Al secondary battery. PAn was prepared in $HBF_4$ aqueous solution by galvanostatic electropolymerization and then used as cathode active material. PAn/Li-Al secondary battery was prepared in 2025 coin type. Characteristics of this battery are summarized as follows. ${\bullet}$ Open curcuit voltage and discharge end voltage was 3.5V and 2.9V, respectively. ${\bullet}$ The ratio of electricities in discharge to theoretical electricities in all undoping of PAn cathode was 56% at constant current discharge of 1mA. ${\bullet}$ The capacity density, energy density and maximum power density per weight of PAn electroactive material were 56.1Ah/kg, 168.4Wh/kg and 16.9kW/kg, respectively.

  • PDF

Application of Single-Compartment Bacterial Fuel Cell (SCBFC) Using Modified Electrodes with Metal Ions to Wastewater Treatment Reactor

  • PARK , DOO-HYUN;PARK, YONG-KEUN;EUI, CHOI
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1120-1128
    • /
    • 2004
  • The SCBFC was composed of bilayered cathode, the outside of which was modified with $Fe^{3+}$ (graphite-Fe(III) cathode) and the inside of which was porcelain membrane, and of an anode which was modified with $Mn^{4+}$ (graphite­Mn(lV) anode). The graphite-Fe(III), graphite-Mn(IV), and porcelain membrane were designed to have micropores. The outside of the cathode was exposed to the atmosphere and the inside was contacted with porcelain membrane. In all SCBFCS the graphite-Fe(III) was used as a cathode, and graphite-Mn(IV) and normal graphite were used as anodes, for comparison of the function between normal graphite and graphite-Mn(IV) anode. The potential difference between graphite-Mn(IV) anode and graphite-Fe(III) cathode was about 0.3 volt, which is the source for the electron driving force from anode to cathode. In chemical fuel cells composed of the graphite-Mn(IV) anode and graphite-Fe(III) cathode, a current of maximal 13 mA was produced coupled to oxidation of NADH to $NAD^{+}$ the current was not produced in SCBFC with normal graphite anode. When growing and resting cells of E. coli were applied to the SCBFC with graphite-Mn(IV) anode, the electricity production and substrate consumption were 6 to 7 times higher than in the SCBFC with normal graphite anode, and when we applied anaerobic sewage sludge to SCBFC with graphite-Mn(IV) anode, the electricity production and substrate consumption were 3 to 5 times higher than in the SCBFC with normal graphite anode. These results suggest that useful electric energy might possibly be produced from SCBFC without electron mediators, electrode-active bacteria, and extra energy consumption for the aeration of catholyte, but with wastewater as a fuel.

Characteristic of transparent OLED using transparent metal cathode with green phosphorescent dopant (투명 금속 음극을 이용한 녹색 인광 OLED의 특성)

  • Yoon, Do-Yeol;Moon, Dae-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.154-154
    • /
    • 2010
  • We have developed transparent OLED with green phosphorescent doped layer using transparent metal cathode deposited by thermal evaporation technique. Phosphorescent guest molecule, $Ir(ppy)_3$, was doped in host mCP for the green phosphorescent emission. Ca/Ag double layers were used as a cathode material of transparent OLED. The turn-on voltage of OLED was 5.2 V. The highest efficiency of the device reachs to 31 cd/A at 2 mA/$cm^2$.

  • PDF

Diamond Deposition by Multi-cathode DC PACVD

  • Lee, Jae-Kap;Lee, Wook-Seong;Baik, Young-Joon;Eun, Kwang-Yong
    • The Korean Journal of Ceramics
    • /
    • v.3 no.1
    • /
    • pp.24-28
    • /
    • 1997
  • Diamond deposition by muti-cathode DC PACVD has been investigated. Five cathodes were independently connected to their own DC power supplies. The voltage and current of each cathods were varied up to 700 V and 3.5 A, respectively. The plasma formation and the diamond deposition behaviour on a substrate of 3 inch in diameter were investigated by optical emission spectroscopy, SEM and Raman spectroscopy. The plasma formed by five cathodes was non-uniform, which was depended on the geometry of cathods array. The growth rate and the quality of diamond film were closely related to the spatial distribution of the plasma.

  • PDF

Evaluation of Transparent Amorphous $V_2O_5$ Thin Film Prepared by Thermal Evaporation (진공증착법으로 제조한 투명 비정질 $V_2O_5$박막의 특성평가)

  • Hwang, Kyu-Seog;Jeong, Seol-Hee;Jeong, Ju-Hyun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.1
    • /
    • pp.27-30
    • /
    • 2008
  • Purpose: This research is that $V_2O_5$ cathode's composition is possible in low temperature. Methods: Transparent in visible spectra range and crystallographically amorphous $V_2O_5$ thin films were prepared by simple vacuum thermal evaporation on soda-lime-silica slide glass substrate. After annealing at 100$^{\circ}C$, 150$^{\circ}C$ and 200$^{\circ}C$ for 10 minutes in air, the surface morphology and the fracture-cross section of the films were investigated by field emission - scanning electron microscope. Transmittance in visible spectra range and surface roughness of the films were analyzed by ultra violet - visible spectrophotometer and scanning probe microscope, respectively. Results: As the increase of annealing temperature from 100$^{\circ}C$ to 150$^{\circ}C$ and 200$^{\circ}C$, transmittance of the $V_2O_5$ films decreased. Optical properties will be fully discussed on the basis of the surface morphological results. Conclusions: Optical transmissivity was superior in case of 100$^{\circ}C$, and could make amorphous $V_2O_5$ thin film that surface quality of thin film did homogeneity.

  • PDF

An OLED Pixel Circuit Compensating Threshold Voltage Variation of n-channel OLED·Driving TFT (n-채널 OLED 구동 박막 트랜지스터의 문턱전압 변동을 보상할 수 있는 OLED 화소회로)

  • Chung, Hoon-Ju
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.3
    • /
    • pp.205-210
    • /
    • 2022
  • A novel OLED pixel circuit is proposed in this paper that uses only n-type thin-film transistors(TFTs) to improve the luminance non-uniformity of the AMOLED display caused by the threshold voltage variation of an OLED driving TFT. The proposed OLED pixel circuit is composed of 6 n-channel TFTs and 2 capacitors. The operation of the proposed OLED pixel circuit consists of the capacitor initializing period, threshold voltage sensing period of an OLED·driving TFT, image data voltage writing period, and OLED·emitting period. As a result of SmartSpice simulation, when the threshold voltage of·OLED·driving TFT varies from 1.2 V to 1.8 V, the proposed OLED pixel circuit has a maximum current error of 5.18 % at IOLED = 1 nA. And, when the OLED cathode voltage rises by 0.1 V, the proposed OLED pixel circuit has very little change in the OLED current compared to the conventional OLED pixel circuit. Therefore, the proposed pixel circuit exhibits superior compensation characteristics for the threshold voltage variation of an OLED driving TFT and the rise of the OLED cathode voltage compared to the conventional OLED pixel circuit.

A Study on the Natural Sex Ratio and Fertility of Galvanized Boar Semen (돼지의 자연성비와 정자의 전기분이에 의한 수태성적에 관한 연구)

  • 이용빈;오봉국;권종국;서국성;정영철;오성종
    • Korean Journal of Animal Reproduction
    • /
    • v.3 no.1
    • /
    • pp.56-60
    • /
    • 1979
  • This study was carried out to find the difference between the naturaly born sex rtio among 1,242 head of pigs(120 litters) at Swine Farm, Cheil Sugar Co. and B-body a, pp.arance from their semen, and to find the conception rates which were inseminated to 40 sows with sperm from the anode and cathode after electrophoresis of boar semen. In order to the electrophoretic separation, the semen was placed into the platimum loop electrodes(105 cc) at room temperature for 30 minutes with D.C. 3V. and 350${\mu}$A. constant. The sperm fluorescent staining method was performed in accordance with Bhattacharya's(1970) method. The spermatozoa were observed through a Olympus Vanox microscope(made in Japan) using exciter filter with I heat barrier HPO 120. The results obtained were summarized as follows: 1. The natural sex ratio of 1,242 piglets(120 litters) which were born at Swine Farm, Cheil Sugar Co. was 50%, and B-body a, pp.arance of its boar semen were 49.24%. 2. With electrophoretic separation, the anode and cathode attracted 65.5${\pm}$5.03% and 29.89${\pm}$4.29% of B-body bearing sperm, respectively. 3. After electrophoresis of boar sperm, they were inseminated to 40 sows with sperm from anode and cathode. The conception rate was 92.5%.

  • PDF