• Title/Summary/Keyword: 5 V cathode

Search Result 303, Processing Time 0.024 seconds

Analysis of the Optical and Electrical Properties of a White OLEDs Using the newly Synthesized Blue Material (신규 합성 청색재료를 사용한 백색 유기발광소자의 광학적$\cdot$전기적 특성평가)

  • Yoon Seok Beom
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.1 s.33
    • /
    • pp.1-6
    • /
    • 2005
  • White light emission is very important for applying electroluminescent device to full display, backlight and illumination light source. In this letter, Multilayer molecular organic white-light-emitting device using thin nim of blue material nitro-DPVT with fluorescent dye Rubrene for an orange emission were fabricated. The basic structure of the fabricated device is a-NPD / nitro-DPVT / nitro- DPVT:Rubrene / BCP/ Alq3. Aluminum is used as the cathode material and ITO was anode material. The white light emission spectrum covers a wide range of the visible region and the Commission Internationale do I'E clairage (C.I.E.) coordinates of the emitted light was ((0.3347, 0.3515) at 14V. The turn voltage is as low as 2.5V and quantum efficiencies are $0.35\%$.

  • PDF

A Study on Properties of OLEDs using $Zn(HPB)_2$ as hole blocking layer ($Zn(HPB)_2$를 Hole blocking layer로 이용한 OLEDs의 특성 연구)

  • Kim, Dong-Eun;Kim, Byoung-Sang;Kwon, Oh-Kwan;Lee, Burm-Jong;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.447-448
    • /
    • 2005
  • Recently, organic light emitting diodes(OLEDs) is widely used as one of the information display techniques. We synthesized 2-(2-hydroxyphenyl)benzoxazole($Zn(HPB)_2$). We studied the luminescent properties of OLEDs using $Zn(HPB)_2$. The ionization potential(IP) and the electron affinity(EA) of $Zn(HPB)_2$ investigated using cyclic-voltammetry(C-V). The JP, EA and Eg were 6.5eV, 3.0eV and 3.5eV, respectively. The PL and EL spectra of $Zn(HPB)_2$ were observed at the wavelength of 4S0nm. We used $Zn(HPB)_2$ as an emitting layer and hole blocking layer. At the experiment about hole blocking effect, we inserted $Zn(HPB)_2$ between emitting material layer(EML) and cathode, and hole transport layer(HTL) and emitting material layer(EML). We measured current density-voltage and luminance-voltage characteristics at room temperature.

  • PDF

Performance Characteristics of Anode-Supported Tubular Solid Oxide Fuel Cell (연료극 지지체식 원통형 고체산화물 연료전지의 성능 특성)

  • Song Rak-Hyun;Song Keun-Suk
    • Korean Journal of Materials Research
    • /
    • v.14 no.5
    • /
    • pp.368-373
    • /
    • 2004
  • To improve the conventional cathode-supported tubular solid oxide fuel cell (SOFC) from the viewpoint of low cell power density, expensive fabrication process and high operation temperature, the anode-supported tubular solid oxide fuel cell was investigated. The anode tube of Ni-8mol% $Y_2$O$_3$-stabilized $ZrO_2$ (8YSZ) was manufactured by extrusion process, and, the electrolyte of 8YSZ and the multi-layered cathode of $LaSrMnO_3$(LSM)ILSM-YSZ composite/$LaSrCoFeO_3$ were coated on the surface of the anode tube by slurry dip coating process, subsequently. Their cell performances were examined under gases of humidified hydrogen with 3% water and air. In the thermal cycle condition of heating and cooling rates with $3.33^{\circ}C$/min, the anode-supported tubular cell showed an excellent resistance as compared with the electrolyte-supported planar cell. The optimum hydrogen flow rate was evaluated and the air preheating increased the cell performance due to the increased gas temperature inside the cell. In long-term stability test, the single cell indicated a stable performance of 300 mA/$\textrm{cm}^2$ at 0.85 V for 255 hr.

The Effect of Electrode Spacing and Size on the Performance of Soil Microbial Fuel Cells (SMFC) (전극간 거리와 크기가 토양미생물연료전지의 성능에 미치는 영향)

  • Im, Seong-Won;Lee, Hye-Jeong;Chung, Jae-Woo;Ahn, Yong-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.11
    • /
    • pp.758-763
    • /
    • 2014
  • Soil microbial fuel cells (SMFC) have gained a great attention as an eco-friendly technology that can simultaneously generate electricity and treat organic pollutants from the contaminated soil. We evaluated the effect of electrode spacing and size on the performance of SMFC treating soil contaminated with organic pollutants. Maximum power density decreased with increase in electrode distance or decrease in electrode size, likely due to higher internal resistance. The maximum voltage and power density decreased from 326 mV and $19.5mW/m^2$ with 4 cm of electrode distance to 222 mV and $5.9mW/m^2$ with 9 cm of electrode distance. In case of electrode size test, the maximum voltage and power density generated was 291 mV, $0.34mW/m^3$ when both of anode and cathode area were $64cm^2$ with 4 cm of electrode distance. The maximum voltage decreased by 19~29% when the anode area decreased to $16cm^2$ while only 3~12% of voltage decreased with cathode area decrease. The maximum power density decreased by 49~68% with decreasing anode size, and by 29~47% with decreasing cathode size. These results showed that the anode area had more significant effects than the cathode area on the power generation of SMFC which has a high internal resistance due to a coexistence of soil and wastewater in the reactor.

The Ejector Design and Test for 5kW Molten Carbonate Fuel Cell (75kW 용융탄산염 연료전지 시스템의 MBOP 개발)

  • Kim, Beom-Joo;Kim, Do-Hyung;Lee, Jung-Hyun;Kang, Seung-Won;Lim, Hee-Chun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.353-356
    • /
    • 2009
  • A pivotal mechanical balance of plant for 75kW class molten carbonate fuel cells comprise of a catalytic burner and an ejector which has been designed and tested in KEPRI(Korea Electric Power Research Institute). The catalytic burner, which oxidizes residual fuel in the anode tail gas, was operated at several conditions. Some problems arose due to local overheating or auto-ignition, which could limit the catalyst life. The catalytic burner was designed by considering both gas mixing and gas velocity. Test results showed that the temperature distribution is very uniform. In addition, an ejector is a fluid machinery to be utilized for mixing fluids, maintaining vacuum, and transporting them. The ejector is placed at mixing point between the anode off gas and the cathode off gas or the fresh air Several ejectors were designed and tested to form a suction on the fuel tail gas and balance the differential pressures between anode and cathode over a range of operating conditions. The tests showed that the design of the nozzle and throat played an important role in balancing the anode tail and cathode inlet gas pressures. The 75kW MCFC system built in our ejector and catalytic burner was successfully operated from Novembe, 2008 to April, 2009. It recorded the voltage of 104V at the current of 754A and reached the maximum generating power of 78.5kW DC. The results for both stand-alone and integration into another balance of plant are discussed.

  • PDF

The Electrochemical Performance Evaluation of PBI-based MEA with Phosphoric Acid Doped Cathode for High Temperature Fuel Cell (인산 도핑 PBI계 막전극접합체를 적용한 고온형 수소연료전지의 전기화학적 내구성 연구)

  • RHEE, JUNKI;LEE, CHANMIN;JEON, YUKWON;LEE, HONG YEON;PARK, SANG SUN;KIM, TAE YOUNG;KIM, HEESEON;SONG, SOONHO;PARK, JUNG OCK;SHUL, YONG-GUN
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.5
    • /
    • pp.471-480
    • /
    • 2017
  • A proton exchange membrane fuel cell (PEMFC) operated at $150^{\circ}C$ was evaluated by a controlling different amount of phosphoric acid (PA) to a membrane-electrode assembly (MEA) without humidification of the cells. The effects on MEA performance of the amount of PA in the cathode are investigated. The PA content in the cathodes was optimized for higher catalyst utilization. The highest value of the active electrochemical area is achieved with the optimum amount of PA in the cathode confirmed by in-situ cyclic voltammetry. The current density-voltage experiments (I-V curve) also shows a transient response of cell voltage affected by the amount of PA in the electrodes. Furthermore, this information was compared with the production variables such as hot pressing and vacuum drying to investigate those effect to the electrochemical performances.

Performance Charateristics of Direct Borohydrides Fuel Cell with Novel Catalyst (귀금속 촉매를 사용한 직접 보로하이드라이드 연료전지의 특성 연구)

  • Jung, M.K.;Shin, D.R.;Seol, Y.K.;Jung, D.H.
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.1
    • /
    • pp.6-11
    • /
    • 2005
  • Direct borohydrides fuel cell (DBFC) was emerged to complement the problem of DMFC's low performance and methanol crossover to the cathode and to apply the fuel cell to portable and mobile devices. In this study, the characteristics of novel catalysts was tested to establish the electrode preparation process of DBFC. Pt black and carbon supported-Pt by paste method were used as the cathode catalysts. Pt black, carbon supported-Au and $AB_5$ alloy were used as the anode catalysts. The characteristics of the electrodes were analyzed by XRD, SEM, EDS. The performance test of single cell using the electrodes were carried out in order to evaluate the electrode performance. In the result, the maximum power output was obtained as 366 mW/mg when using Pt/C as anode and cathode catalysts.

Analysis of Inorganic Acids by Capillary Zone Electrophoresis (Capillary Zone Electrophoresis를 이용한 음이온 동시분석에 관한 연구)

  • Park, Sung-Woo;Jin, Kwang-Ho;You, Jae-Hoon;Kim, Dong-Hwan;Seo, Baeseuk;Kim, Young-Sang
    • Analytical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.213-221
    • /
    • 1998
  • The determination of inorganic anions by capillary zone electrophoresis is reported. A ten component synthetic mixture of anions of bromide, chloride, fluoride, nitrite, nitrate, sulfite, sulfate, perchlorate, chlorate and chlorite was separated by the capillary column and detected by indirect UV method. The running buffer contained 5 mM ammonium dichromate, 10 mM ammonium acetate, 20 mM diethylenetriamine, 10% methanol solution at pH 9.3. A potential of 15 kV at the cathode (reversed polarity) was utilized for the separation of inorganic anions. A complete separation of anions was achieved in less then 10 min and the applicabilities of the method for the analysis of real samples was demonstrated. We compare the concentration of anions in toluene inhaled humen's urine and in postmortem bloods obtained by capillary zone electrophoresis and ion chromatograph.

  • PDF

Triclinic Na3.12Co2.44(P2O7)2 as a High Redox Potential Cathode Material for Na-Ion Batteries

  • Ha, Kwang-Ho;Kwon, Mi-Sook;Lee, Kyu Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.187-194
    • /
    • 2020
  • Two types of sodium cobalt pyrophosphates, triclinic Na3.12Co2.44(P2O7)2 and orthorhombic Na2CoP2O7, are compared as high-voltage cathode materials for Na-ion batteries. Na2CoP2O7 shows no electrochemical activity, delivering negligible capacity. In contrast, Na3.12Co2.44(P2O7)2 exhibits good electrochemical performance, such as high redox potential at ca. 4.3 V (vs. Na/Na+) and stable capacity retention over 50 cycles, although Na3.12Co2.44(P2O7)2 delivered approximately 40 mA h g-1. This is attributed to the fact that Na2CoP2O7 (~3.1 Å) has smaller diffusion channel size than Na3.12Co2.44(P2O7)2 (~4.2 Å). Moreover, the electrochemical performance of Na3.12Co2.44(P2O7)2 is examined using Na cells and Li cells. The overpotential of Na cells is smaller than that of Li cells. This is due to the fact that Na3.12Co2.44(P2O7)2 has a smaller charge transfer resistance and higher diffusivity for Na+ ions than Li+ ions. This implies that the large channel size of Na3.12Co2.44(P2O7)2 is more appropriate for Na+ ions than Li+ ions. Therefore, Na3.12Co2.44(P2O7)2 is considered a promising high-voltage cathode material for Na-ion batteries, if new electrolytes, which are stable above 4.5 V vs. Na/Na+, are introduced.

Electrical Characteristics of SiC Lateral P-i-N Diodes Fabricated on SiC Semi-Insulating Substrate

  • Kim, Hyoung Woo;Seok, Ogyun;Moon, Jeong Hyun;Bahng, Wook;Jo, Jungyol
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.387-392
    • /
    • 2018
  • Static characteristics of SiC (silicon carbide) lateral p-i-n diodes implemented on semi-insulating substrate without an epitaxial layer are inVestigated. On-axis SiC HPSI (high purity semi-insulating) and VDSI (Vanadium doped semi-insulating) substrates are used to fabricate the lateral p-i-n diode. The space between anode and cathode ($L_{AC}$) is Varied from 5 to $20{\mu}m$ to inVestigate the effect of intrinsic-region length on static characteristics. Maximum breakdown Voltages of HPSI and VDSI are 1117 and 841 V at $L_{AC}=20{\mu}m$, respectiVely. Due to the doped Vanadium ions in VDSI substrate, diffusion length of carriers in the VDSI substrate is less than that of the HPSI substrate. A forward Voltage drop of the diode implemented on VDSI substrate is 12 V at the forward current of $1{\mu}A$, which is higher than 2.5 V of the diode implemented on HPSI substrate.