• Title/Summary/Keyword: 4NF

Search Result 1,177, Processing Time 0.026 seconds

Interleukin-32: Frenemy in cancer?

  • Han, Sora;Yang, Young
    • BMB Reports
    • /
    • v.52 no.3
    • /
    • pp.165-174
    • /
    • 2019
  • Interleukin-32 (IL-32) was originally identified in natural killer (NK) cells activated by IL-2 in 1992. Thus, it was named NK cell transcript 4 (NK4) because of its unknown function at that time. The function of IL-32 has been elucidated over the last decade. IL-32 is primarily considered to be a booster of inflammatory reactions because it is induced by pro-inflammatory cytokines and stimulates the production of those cytokines and vice versa. Therefore, many studies have been devoted to studying the roles of IL-32 in inflammation-associated cancers, including gastric, colon cancer, and hepatocellular carcinoma. At the same time, roles of IL-32 have also been discovered in other cancers. Collectively, IL-32 fosters the tumor progression by nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$)-mediated cytokines and metalloproteinase production, as well as stimulation of differentiation into immunosuppressive cell types in some cancer types. However, it is also able to induce tumor cell apoptosis and enhance NK and cytotoxic T cell sensitivity in other cancer types. In this review, we will address the function of each IL-32 isoform in different cancer types studied to date, and suggest further strategies to comprehensively elucidate the roles of IL-32 in a context-dependent manner.

Influence of inorganic compounds on nanofiltration membrane fouling with Al hydrolysis products (알루미늄 수화물 나노여과 막오염에 대한 공존염의 영향에 관한 연구)

  • Choi, Yang-Hun;Kweon, Ji-Hyang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.479-488
    • /
    • 2011
  • Nanofiltration was performed with polyaluminium chloride solutions at different pH conditions to understand effects of inorganic compounds on aluminum hydrolysis products, i.e., three distinctive groups of aluminum species: polymeric Al at low pH; $Al(OH)_3$ at neutral pH; and ${Al(OH)_4}^-$ at high pH. The PACl solution was prepared to be approximately 4.0mM and adjusted to the designated pH. The influence of inorganic compounds on Al species fouling was investigated with 4.9mM $CaCl_2$ and 3.5mM $MgSO_4$ because $Ca^{2+}$, $Mg^{2+}$, $Cl^-$, ${SO_4}^{2-}$ are the most common inorganics in the drinking water. NF membrane fouling was measured by flux decline rate. The impact of $CaCl_2$ was not significant on the individual Al hydrolysis products fouling. However, the flux decline rate was drastically changed in the presence of $MgSO_4$. The concentration of particulate matters was considerably increased possibly due to interaction between Al species and ${SO_4}^{2-}$ where $MgSO_4$ was introduced. The particulates were accumulated on the membrane and enhanced the hydraulic resistance of the cake layer. In addition, conductivity removal of the membrane was decreased when Al-hydroxide was dominant due to reduction of membrane surface charge. The rejection of $Ca^{2+}$and $Mg^{2+}$ were considerably different, which implys that composition of inorganics paly a role on conductivity removal.

Simultaneous Inhibition of CXCR4 and VLA-4 Exhibits Combinatorial Effect in Overcoming Stroma-Mediated Chemotherapy Resistance in Mantle Cell Lymphoma Cells

  • Kim, Yu-Ri;Eom, Ki-Seong
    • IMMUNE NETWORK
    • /
    • v.14 no.6
    • /
    • pp.296-306
    • /
    • 2014
  • There is growing evidence that crosstalk between mantle cell lymphoma (MCL) cells and stromal microenvironments, such as bone marrow and secondary lymphoid tissues, promotes tumor progression by enhancing survival and growth as well as drug resistance of MCL cells. Recent advances in the understanding of lymphoma microenvironment have led to the identification of crucial factors involved in the crosstalk and subsequent generation of their targeted agents. In the present study, we evaluated the combinatory effect of blocking antibodies (Ab) targeting CXCR4 and VLA-4, both of which were known to play significant roles in the induction of environment-mediated drug resistance (EMDR) in MCL cell line, Jeko-1. Simultaneous treatment with anti-CXCR4 and anti-VLA-4 Ab not only reduced the migration of Jeko-1 cells into the protective stromal cells, but also enhanced sensitivity of Jeko-1 to a chemotherapeutic agent to a greater degree than with either Ab alone. These combinatorial effects were associated with decreased phosphorylation of ERK1/2, AKT and NF-${\kappa}B$. Importantly, drug resistance could not be overcome once the adhesion of Jeko-1 to the stromal occurred despite the combined use of Abs, suggesting that the efforts to mitigate migration of MCLs should be attempted as much as possible. Our results provide a basis for a future development of therapeutic strategies targeting both CXCR4 and VLA-4, such as Ab combinations or bispecific antibodies, to improve treatment outcomes of MCL with grave prognosis.

Design of Multi-Band Low Noise Amplifier Using Switching Transistors for 2.4/3.5/5.2 GHz Band (스위칭 트랜지스터를 이용하여 2.4/3.5/5.2 GHz에서 동작하는 다중 대역 저잡음 증폭기 설계)

  • Ahn, Young-Bin;Jeong, Ji-Chai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.2
    • /
    • pp.214-219
    • /
    • 2011
  • This paper presents a multi-band low noise amplifier(LNA) with switching operation for 2.4, 3.5 and 5.2 GHz bands using CMOS 0.18 um technology. The proposed circuit uses switching transistors to achieve the input and output matching for multi-band. By using the switching transistors, we can adjust the transconductance, gate inductance and gatesource capacitance at input stage and total output capacitance at output stage. The proposed LNA exhibits gain of 14.2, 12 and 11 dB and noise figure(NF) of 3, 2.9 and 2.8 dB for 2.4, 3.5 and 5.2 GHz, respectively.

MiR-182-5p Mediated by Exosomes Derived From Bone Marrow Mesenchymal Stem Cell Attenuates Inflammatory Responses by Targeting TLR4 in a Mouse Model of Myocardial Infraction

  • Chuang Sun;Wei Li;Yanhong Li;Jian Chen;Huixian An;Guangwei Zeng;Tingting Wang;Yazhou Guo;Changying Wang
    • IMMUNE NETWORK
    • /
    • v.22 no.6
    • /
    • pp.49.1-49.15
    • /
    • 2022
  • Exosomes derived from mesenchymal stem cells (MSCs) could protect against myocardial infarction (MI). TLR4 is reported to play an important role in MI, while microRNA-182-5p (miR-182-5p) negatively regulates TLR4 expression. Therefore, we hypothesize that MSCs-derived exosomes overexpressing miR-182-5p may have beneficial effects on MI. We generated bone marrow mesenchymal stem cells (BM-MSCs) and overexpressed miR-182-5p in these cells for exosome isolation. H2O2-stimulated neonatal mouse ventricle myocytes (NMVMs) and MI mouse model were employed, which were subjected to exosome treatment. The expression of inflammatory factors, heart function, and TLR4 signaling pathway activation were monitored. It was found that miR-182-5p decreased TLR4 expression in BM-MSCs and NMVMs. Administration of exosomes overexpressing miR-182-5p to H2O2-stimulated NMVMs enhanced cell viability and suppressed the expression of inflammatory cytokines. In addition, they promoted heart function, suppressed inflammatory responses, and de-activated TLR4/NF-κB signaling pathway in MI mice. In conclusion, miR-182-5p transferred by the exosomes derived from BM-MSCs protected against MI-induced impairments by targeting TLR4.

Implementation of 4-Wavelength Optical Transceiver with Excellent Transfer/Isolation Characteristics (높은 채널 분리 특성을 가지는 1550nm 대역 4 파장 광모듈 및 광중계기 제작)

  • 이유종
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.787-790
    • /
    • 2003
  • A 4-wavelength optical transceiver system is designed and implemented by using 4 OADMs (optical add-drop multiplexers), WDMs, and optical transceivers. In this new system, the wavelengths of 1510 nm and 1530 nm are used for upload and download signals, respectively, as well as the wavelengths of 1550 nm and 1310 nm which have been utilized in a 2-wavelength optical transceiver systems. The 4-wavelength optical module shows very encouraging pass characteristics of about - 5 dB and isolation characteristics of less than -40 dB, which is configured with two OADMs, 4 couplers, and WDM couplers by fusion splicing. Noise figure (NF) of the one-stage balanced amplifier designed and fabricated for receiver module is 0.38 dB and the amplifying gain is 14.2 dB. S$_{11}$, S$_{22}$ and input, output VSWR are -28.81 dB, -32.08 dB, 1.05 : 1, 1.08 : 1, respectively.y.

  • PDF

The Design of Low Noise Amplifier for Overall IMT-2000 Band Repeater (IMT-2000 중계기용 전대역 저잡음 증폭기 설계)

  • 유영길
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.4
    • /
    • pp.409-412
    • /
    • 2002
  • The LNA(Low Noise Amplifier) is designed for use in low cost commercial application covered fully IMT-2000 band(1920~2170MHz, BW=250MHz). It is optimized source inductance for source lead and designed to equivalent etched line. The LNA uses a high pass impedance matching network for noise match and simple structure. The bias circuit designs have been made self-biased with a negative voltage applied to gate. The power supply voltage is 8V, total current is 180mA. The LNA is biased at a Vgs of -0.4, Vds of 4V for first stage and Vds of 5V for second stage. The LNA is designed competitively for commercial product specification. The measured gain and noise figure of the completed amplifier was 20dB and 1dB, respectively. Also, input VSWR, P1dB and gain flatness was measured of 1.14 ~ l.3dB, 22.4dBm and $\pm$0.45dB, respectively. The designed LNA can be used for commercial product.

Anti-inflammatory effects of a novel compound, MPQP, through the inhibition of IRAK1 signaling pathways in LPS-stimulated RAW 264.7 macrophages

  • Kim, Ba Reum;Cho, Young-Chang;Cho, Sayeon
    • BMB Reports
    • /
    • v.51 no.6
    • /
    • pp.308-313
    • /
    • 2018
  • Small-molecule inhibitors are widely used to treat a variety of inflammatory diseases. In this study, we found a novel anti-inflammatory compound, 1-[(2R,4S)-2-methyl-4-(phenylamino)-1,2,3,4-tetrahydroquinolin-1-yl]prop-2-en-1-one (MPQP). It showed strong anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. These effects were exerted through the inhibition of the production of NO and pro-inflammatory cytokines, such as interleukin (IL)-6, $IL-1{\beta}$, and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$). Furthermore, MPQP decreased the expression levels of inducible NO synthase (iNOS) and cyclooxygenase 2 (COX-2). Additionally, it mediated the inhibition of the phosphorylation of p38, c-Jun N-terminal kinase (JNK), the inhibitor of ${\kappa}B{\alpha}$ ($I{\kappa}B{\alpha}$), and their upstream kinases, $I{\kappa}B$ kinase (IKK) ${\alpha}/{\beta}$, mitogen-activated protein kinase kinase (MKK) 3/6, and MKK4. Furthermore, the expression of IL-1 receptor-associated kinase 1 (IRAK1) that regulates $NF-{\kappa}B$, p38, and the JNK signaling pathways, was also increased by MPQP. These results indicate that MPQP regulates the IRAK1-mediated inflammatory signaling pathways by targeting IRAK1 or its upstream factors.

Design of an Ultra Low Power CMOS 2.4 GHz LNA (초 저전력 CMOS 2.4 GHz 저잡음 증폭기 설계)

  • Jang, Yo-Han;Choi, Jae-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.9
    • /
    • pp.1045-1049
    • /
    • 2010
  • In this paper, we proposed an ultra-low power low noise amplifier(LNA) using a TSMC 0.18 ${\mu}m$ RF CMOS process. To satisfy the low power consumption with high gain, a current-reused technique is utilized. In addition, a low bias voltage in the subthreshold region is utilized to achieve ultra low power characteristic. The designed LNA has the voltage gain of 13.8 dB and noise figure(NF) of 3.4 dB at 2.4 GHz. The total power consumption of the designed LNA is only 0.63 mW from 0.9 V supply voltage and chip occupies $1.1\;mm{\times}0.8\;mm$ area.

Dielectric and Magnetic Properties of Co-doped Ni0.65Zn0.35Fe2O4 Thin Films Prepared by Using a Sol-gel Method

  • Lee, Hyun-Sook;Lee, Jae-Gwang;Baek, K.S.;Oak, H.N.
    • Journal of Magnetics
    • /
    • v.8 no.4
    • /
    • pp.138-141
    • /
    • 2003
  • $Ni_{0.65}Zn_{0.35}Fe_2O_4$thin films were prepared by using a sol-gel method. Their crystallographic, dielectric and magnetic properties were investigated as a function of Cu contents by means of an X-ray diffractometer (XRD), X-ray reflectivity, LCZ meter (NF2232), a vibrating sample magnetometer (VSM), and an atomic force microscope (AFM). From typical C-V measurements for $Ni_{0.65}Zn_{0.35}Fe_2O_4$ thin films on p-type silicon substrate, the surface charge density was calculated as 1.4 ${\mu}$C/$m^2$. The dielectric constant evaluated from the capacitance at the accumulation state was 28. The high $H_{c}$ and low $M_{sat}$ at x=0.0 and 0.1 were due to the growth of the ${\alpha}$-$Fe_2O_3$ phase having antiferromagnetic properties. The rapidly decreased $H_{c}$ and increased $M_{sat}$ at x=0.2 and 0.3 can be explained that the ${\alpha}$-$Fe_2O_3$ phases have completely disappeared at x=0.3 and so, non-magnetic defects are minimized. The $M_{sat}$ was slightly decreased and the $H_{c}$ was increased above at x=0.3 because the increase of grain boundary due to smaller grain size acts as defects during magnetization process.