Browse > Article
http://dx.doi.org/10.4110/in.2014.14.6.296

Simultaneous Inhibition of CXCR4 and VLA-4 Exhibits Combinatorial Effect in Overcoming Stroma-Mediated Chemotherapy Resistance in Mantle Cell Lymphoma Cells  

Kim, Yu-Ri (Cancer Research Institute in the Catholic University of Korea)
Eom, Ki-Seong (Cancer Research Institute in the Catholic University of Korea)
Publication Information
IMMUNE NETWORK / v.14, no.6, 2014 , pp. 296-306 More about this Journal
Abstract
There is growing evidence that crosstalk between mantle cell lymphoma (MCL) cells and stromal microenvironments, such as bone marrow and secondary lymphoid tissues, promotes tumor progression by enhancing survival and growth as well as drug resistance of MCL cells. Recent advances in the understanding of lymphoma microenvironment have led to the identification of crucial factors involved in the crosstalk and subsequent generation of their targeted agents. In the present study, we evaluated the combinatory effect of blocking antibodies (Ab) targeting CXCR4 and VLA-4, both of which were known to play significant roles in the induction of environment-mediated drug resistance (EMDR) in MCL cell line, Jeko-1. Simultaneous treatment with anti-CXCR4 and anti-VLA-4 Ab not only reduced the migration of Jeko-1 cells into the protective stromal cells, but also enhanced sensitivity of Jeko-1 to a chemotherapeutic agent to a greater degree than with either Ab alone. These combinatorial effects were associated with decreased phosphorylation of ERK1/2, AKT and NF-${\kappa}B$. Importantly, drug resistance could not be overcome once the adhesion of Jeko-1 to the stromal occurred despite the combined use of Abs, suggesting that the efforts to mitigate migration of MCLs should be attempted as much as possible. Our results provide a basis for a future development of therapeutic strategies targeting both CXCR4 and VLA-4, such as Ab combinations or bispecific antibodies, to improve treatment outcomes of MCL with grave prognosis.
Keywords
CXCR4; VLA-4; Mantle cell lymphoma; Microenvironment; Drug resistance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 The Non-Hodgkin's Lymphoma Classification Project. 1997. A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin's lymphoma. Blood 89: 3909-3918.
2 Matsunaga, T., N. Takemoto, T. Sato, R. Takimoto, I. Tanaka, A. Fujimi, T. Akiyama, H. Kuroda, Y. Kawano, M. Kobune, J. Kato, Y. Hirayama, S. Sakamaki, K. Kohda, K. Miyake, and Y. Niitsu. 2003. Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat. Med. 9: 1158-1165.   DOI   ScienceOn
3 Kurtova, A. V., A. T. Tamayo, R. J. Ford, and J. A. Burger. 2009. Mantle cell lymphoma cells express high levels of CXCR4, CXCR5, and VLA-4 (CD49d): importance for interactions with the stromal microenvironment and specific targeting. Blood 113: 4604-4613.   DOI
4 Mohle, R., C. Failenschmid, F. Bautz, and L. Kanz. 1999. Overexpression of the chemokine receptor CXCR4 in B cell chronic lymphocytic leukemia is associated with increased functional response to stromal cell-derived factor-1 (SDF-1). Leukemia 13: 1954-1959.   DOI
5 Bradstock, K. F., V. Makrynikola, A. Bianchi, W. Shen, J. Hewson, and D. J. Gottlieb. 2000. Effects of the chemokine stromal cell-derived factor-1 on the migration and localization of precursor-B acute lymphoblastic leukemia cells within bone marrow stromal layers. Leukemia 14: 882-888.   DOI
6 Dialynas, D. P., L. Shao, G. F. Billman, and J. Yu. 2001. Engraftment of human T-cell acute lymphoblastic leukemia in immunodeficient NOD/SCID mice which have been preconditioned by injection of human cord blood. Stem Cells 19: 443-452.   DOI
7 Hideshima, T., and K. C. Anderson. 2002. Molecular mechanisms of novel therapeutic approaches for multiple myeloma. Nat. Rev. Cancer 2: 927-937.   DOI   ScienceOn
8 Tavor, S., I. Petit, S. Porozov, A. Avigdor, A. Dar, L. Leider-Trejo, N. Shemtov, V. Deutsch, E. Naparstek, A. Nagler, and T. Lapidot. 2004. CXCR4 regulates migration and development of human acute myelogenous leukemia stem cells in transplanted NOD/SCID mice. Cancer Res. 64: 2817-2824.   DOI   ScienceOn
9 Beider, K., E. Ribakovsky, M. Abraham, H. Wald, L. Weiss, E. Rosenberg, E. Galun, A. Avigdor, O. Eizenberg, A. Peled, and A. Nagler. 2013. Targeting the CD20 and CXCR4 pathways in non-hodgkin lymphoma with rituximab and high-affinity CXCR4 antagonist BKT140. Clin. Cancer Res. 19: 3495-3507.   DOI
10 Lavrovsky, Y., Y. A. Ivanenkov, K. V. Balakin, D. A. Medvedeva, and A. V. Ivachtchenko. 2008. CXCR4 receptor as a promising target for oncolytic drugs. Mini Rev. Med. Chem. 8: 1075-1087.   DOI
11 Burger, J. A., and A. Peled. 2009. CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers. Leukemia 23: 43-52.   DOI   ScienceOn
12 Shishido, S., H. Bonig, and Y. M. Kim. 2014. Role of integrin alpha4 in drug resistance of leukemia. Front. Oncol. 4: 99.
13 Damiano, J. S., A. E. Cress, L. A. Hazlehurst, A. A. Shtil, and W. S. Dalton. 1999. Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 93: 1658-1667.
14 Podar, K., Y. T. Tai, B. K. Lin, R. P. Narsimhan, M. Sattler, T. Kijima, R. Salgia, D. Gupta, D. Chauhan, and K. C. Anderson. 2002. Vascular endothelial growth factor-induced migration of multiple myeloma cells is associated with beta 1 integrin- and phosphatidylinositol 3-kinase-dependent PKC alpha activation. J. Biol. Chem. 277: 7875-7881.   DOI
15 Ding, Z., T. B. Issekutz, G. P. Downey, and T. K. Waddell. 2003. L-selectin stimulation enhances functional expression of surface CXCR4 in lymphocytes: implications for cellular activation during adhesion and migration. Blood 101: 4245-4252.   DOI
16 Meads, M. B., L. A. Hazlehurst, and W. S. Dalton. 2008. The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clin. Cancer Res. 14: 2519-2526.   DOI
17 Zeng, Z., Y. X. Shi, I. J. Samudio, R. Y. Wang, X. Ling, O. Frolova, M. Levis, J. B. Rubin, R. R. Negrin, E. H. Estey, S. Konoplev, M. Andreeff, and M. Konopleva. 2009. Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood 113: 6215-6224.   DOI   ScienceOn
18 Rizzatti, E. G., R. P. Falcao, R. A. Panepucci, R. Proto-Siqueira, W. T. Anselmo-Lima, O. K. Okamoto, and M. A. Zago. 2005. Gene expression profiling of mantle cell lymphoma cells reveals aberrant expression of genes from the PI3K-AKT, WNT and TGFbeta signalling pathways. Br. J. Haematol. 130: 516-526.   DOI
19 Perez-Galan, P., H. Mora-Jensen, M. A. Weniger, A. L. Shaffer, 3rd, E. G. Rizzatti, C. M. Chapman, C. C. Mo, L. S. Stennett, C. Rader, P. Liu, N. Raghavachari, M. Stetler-Stevenson, C. Yuan, S. Pittaluga, I. Maric, K. M. Dunleavy, W. H. Wilson, L. M. Staudt, and A. Wiestner. 2011. Bortezomib resistance in mantle cell lymphoma is associated with plasmacytic differentiation. Blood 117: 542-552.   DOI
20 Bleul, C. C., R. C. Fuhlbrigge, J. M. Casasnovas, A. Aiuti, and T. A. Springer. 1996. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J. Exp. Med. 184: 1101-1109.   DOI   ScienceOn
21 Felsher, D. W., and J. M. Bishop. 1999. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol. Cell 4: 199-207.   DOI
22 Peled, A., O. Kollet, T. Ponomaryov, I. Petit, S. Franitza, V. Grabovsky, M. M. Slav, A. Nagler, O. Lider, R. Alon, D. Zipori, and T. Lapidot. 2000. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 95: 3289-3296.
23 Lwin, T., L. A. Hazlehurst, S. Dessureault, R. Lai, W. Bai, E. Sotomayor, L. C. Moscinski, W. S. Dalton, and J. Tao. 2007. Cell adhesion induces p27Kip1-associated cell-cycle arrest through down-regulation of the SCFSkp2 ubiquitin ligase pathway in mantle-cell and other non-Hodgkin B-cell lymphomas. Blood 110: 1631-1638.   DOI
24 Ngo, H. T., X. Leleu, J. Lee, X. Jia, M. Melhem, J. Runnels, A. S. Moreau, N. Burwick, A. K. Azab, A. Roccaro, F. Azab, A. Sacco, M. Farag, R. Sackstein, and I. M. Ghobrial. 2008. SDF-1/CXCR4 and VLA-4 interaction regulates homing in Waldenstrom macroglobulinemia. Blood 112: 150-158.   DOI
25 Nagasawa, T., H. Kikutani, and T. Kishimoto. 1994. Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc. Natl. Acad. Sci. U. S. A. 91: 2305-2309.   DOI   ScienceOn