• Title/Summary/Keyword: 4D Planning

Search Result 717, Processing Time 0.027 seconds

Kinematic model, path planning and tracking algorithms of 4-wheeled mobile robot 2-degree of freedom using gaussian function (4-구륜 2-자유도 이동 로보트의 기구학 모델과 가우스함수를 이용한 경로설계 및 추적 알고리즘)

  • 김기열;정용국;박종국
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.12
    • /
    • pp.19-29
    • /
    • 1997
  • This paper presents stable kinematic modeling and path planning and path tracking algorithms for the poisition control of 4-wheeled 2-d.o.f(degree of freedom) mobile robot. We drived the actuated inverse and sensed forward solution for the calculation of actuator velocity and robot velocities. the deal-reckoning algorithm is introduced to calculate the position of WMR in real time. The gaussian functions are applied to control and to design the smooth orientation angle of WMR and the path planning algorithm for obstacle avoidance is prosed. We composed feedback control system to compensate for error because of uncertainty kinematic modeling and measurement noise. The simulation resutls show that the proposed kinematkc modeling and path planning and feedback control algorithms are useful.

  • PDF

Case Study : BIM for Planning, Simulating, and Implementing Complex Site Logistics

  • Kim, JongHoon;Cohen, Fernando Castillo
    • Journal of KIBIM
    • /
    • v.5 no.4
    • /
    • pp.47-52
    • /
    • 2015
  • This paper presents a case study using Building Information Modeling (BIM) for planning, simulating, and implementing complex site logistics in a headquarter office building construction project in Silver Spring, MD. As part of the project a prefabricated 92ft structural tube steel pedestrian connector bridge was installed between two adjacent buildings in the city of Silver Spring, MD. There were multiple significant challenges to deliver, offload, prepare, and install the connector bridge safely, on time, and with the minimum disturbances to the neighbors. BIM was of the foremost importance to visualize, simulate, analyze, improve, and communicate the site logistics plan from delivery to installation of the connector bridge. As a result of the effort, GC of the project was able to prepare a highly detailed plan, communicate it effectively to all stakeholders, and flawlessly execute the work as planned. This case study would provide a useful reference for contractors who are seeking a better planning method that enables generation of more accurate, implementable, optimized plans for complex site logistics.

Material Planning and Information Management for Automotive General Assembly using Digital Factory (디지털공장을 이용한 자동차 조립공장의 자재계획 및 정보관리)

  • Noh S. D.;Park Y.-J.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.4
    • /
    • pp.325-333
    • /
    • 2004
  • To ensure competitiveness in the modern automotive market, material arrangements and information managements should be performed concurrently with new car developments. In automotive general assembly shops, thus, new business workflow and supporting environments are inevitable to reduce the manufacturing preparation time in developing a new car in the manner of concurrent and collaborative engineering. Since complete material arrangements for a whole general assembly system is a huge and complex job, several planners should execute their planning jobs and share information. Therefore, each planner should provide others with his/her results with continuous on-line communication and cooperation. Digital automotive general assembly factory is useful the performing concurrent and collaborative engineering and is essential for material arrangements and information managements systems. In this research, we constructed a sophisticated digital factory of an automotive general assembly shop by measuring and modeling through the parametric 3-D CAD, and a web-based system for concurrent and collaborative material arrangements for automotive general assembly via 3D mock-up is developed. By the digital general assembly shop and developed web-based system, savings in time and colt of manufacturing preparation activities are possible, and the reliability of the planning result Is greatly improved.

Development of an Approximate Cost Estimating Framework for River Facility Construction at Planning Stage (하천시설물 공사의 기획단계 개략공사비 산정체계 개발)

  • Shin, Jung Min;Woo, Sungkwon;Lee, Si Wook;Kim, Ok Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.371-381
    • /
    • 2008
  • The systematic methodology for estimating construction cost approximately at planning and pre-design phase of a river facility construction project has not yet been established because of its unique characteristics including its relatively small project size in terms of cost. This research suggests a 4-level cost information structure and identifies critical factors affecting construction cost as a result of thorough analysis of accumulated historical cost data of river facility construction projects. Also, this research presents the framework of the approximate cost estimating methodology for river facility construction project a planning stage.

An Adaptive Path-Planning for Intelligent AGV System (지능형 무인반송시스템을 위한 적응적 경로설정)

  • Ko, Jung-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.115-121
    • /
    • 2017
  • In this paper, the intelligent vision system for an effective and intelligent path-planning of an industrial AGV system based on stereo camera system is proposed. The depth information and disparity map are detected in the inputting images of a parallel stereo camera. The distance between the industrial AGV system and the obstacle detected and the 2D path coordinates obtained from the location coordinates, and then the relative distance between the obstacle and the other objects obtained from them. The industrial AGV system move automatically by effective and intelligent path-planning using the obtained 2D path coordinates. From some experiments on AGV system driving with the stereo images, it is analyzed that error ratio between the calculated and measured values of the distance between the objects is found to be very low value of 2% on average, respectably.

Development of 2.5D Photon Dose Calculation Algorithm (2.5D 광자선 선량계산 알고리즘 개발)

  • 조병철;오도훈;배훈식
    • Progress in Medical Physics
    • /
    • v.10 no.2
    • /
    • pp.103-114
    • /
    • 1999
  • In this study, as a preliminary study for developing a full 3D photon dose calculation algorithm, We developed 2.5D photon dose calculation algorithm by extending 2D calculation algorithm to allow non-coplanar configurations of photon beams. For this purpose, we defined the 3d patient coordinate system and the 3d beam coordinate system, which are appropriate to 3d treatment planning and dose calculation. and then, calculate a transformation matrix between them. For dose calculation, we extended 2d "Clarkson-Cunningham" model to 3d one, which can calculate wedge fields as well as regular and irregular fields on arbitrary plane. The simple Batho's power-law method was implemented as an inhomogeneity correction. We evaluated the accuracy of our dose model following procedures of AAPM TG#23; radiation treatment planning dosimetry verifications for 4MV of Varian Clinac-4. As results, PDDs (percent depth dose) of cubic fields, the accuracy of calculation are within 1% except buildup region, and $\pm$3% for irregular fields and wedge fields. And for 45$^{\circ}$ oblique incident beam, the deviations between measurements and calculations are within $\pm$4%. In the case of inhomogeneity correction, the calculation underestimate 7% at the lung/water boundary and overestimate 3% at the bone/water boundary. At the conclusions, we found out our model can predict dose with 5% accuracy at the general condition. we expect our model can be used as a tool for educational and research purpose.. purpose..

  • PDF

Development of Multi-platform 3D Interactive Rural Landscape Simulator with Low-cost Web GIS and Game Engine (무료 Web GIS와 보급형 게임엔진을 이용한 다중플랫폼 3차원 인터랙티브 농촌경관 시뮬레이터 개발)

  • Lee, Sungyong;Kim, Taegon;Lee, Jimin;Suh, Kyo
    • Journal of Korean Society of Rural Planning
    • /
    • v.19 no.4
    • /
    • pp.177-189
    • /
    • 2013
  • 3D modeling and rendering technologies are getting more attention from landscape planners and architects because the virtual reality based on 3D graphic technology could give more realistic experience to landscape simulation users and boost promotional effects. The 3D landscape simulation, however, not only requires a lot of cost and time in production, but also demands efforts to distribute to consumers due to various computing environment of them. The purpose of this study is to suggest a process for developing an interactive 3D landscape simulator with low-cost, which can support multi-platform functionality in high quality through reviewing related current software and web services. We select GIMP for 2D image texturing, SketchUpfor 3D modeling, Unity for real-time rendering, and Google Earth for terrain modeling considering price and workability and apply the developed process for Windows, Web, and Android versions to test the applicability for Sangji-ri, Gosam-myeon, Gyeonggi-do, Korea.

Adaptability Improvement of Learning from Demonstration with Particle Swarm Optimization for Motion Planning (운동계획을 위한 입자 군집 최적화를 이용한 시범에 의한 학습의 적응성 향상)

  • Kim, Jeong-Jung;Lee, Ju-Jang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.4
    • /
    • pp.167-175
    • /
    • 2016
  • We present a method for improving adaptability of Learning from Demonstration (LfD) strategy by combining the LfD and Particle Swarm Optimization (PSO). A trajectory generated from an LfD is modified with PSO by minimizing a fitness function that considers constraints. Finally, the final trajectory is suitable for a task and adapted for constraints. The effectiveness of the method is shown with a target reaching task with a manipulator in three-dimensional space.

Volumetric-Modulated Arc Radiotherapy Using Knowledge-Based Planning: Application to Spine Stereotactic Body Radiotherapy

  • Jeong, Chiyoung;Park, Jae Won;Kwak, Jungwon;Song, Si Yeol;Cho, Byungchul
    • Progress in Medical Physics
    • /
    • v.30 no.4
    • /
    • pp.94-103
    • /
    • 2019
  • Purpose: To evaluate the clinical feasibility of knowledge-based planning (KBP) for volumetric-modulated arc radiotherapy (VMAT) in spine stereotactic body radiotherapy (SBRT). Methods: Forty-eight VMAT plans for spine SBRT was studied. Two planning target volumes (PTVs) were defined for simultaneous integrated boost: PTV for boost (PTV-B: 27 Gy/3fractions) and PTV elective (PTV-E: 24 Gy/3fractions). The expert VMAT plans were manually generated by experienced planners. Twenty-six plans were used to train the KBP model using Varian RapidPlan. With the trained KBP model each KBP plan was automatically generated by an individual with little experience and compared with the expert plan (closed-loop validation). Twenty-two plans that had not been used for KBP model training were also compared with the KBP results (open-loop validation). Results: Although the minimal dose of PTV-B and PTV-E was lower and the maximal dose was higher than those of the expert plan, the difference was no larger than 0.7 Gy. In the closed-loop validation, D1.2cc, D0.35cc, and Dmean of the spinal cord was decreased by 0.9 Gy, 0.6 Gy, and 0.9 Gy, respectively, in the KBP plans (P<0.05). In the open-loop validation, only Dmean of the spinal cord was significantly decreased, by 0.5 Gy (P<0.05). Conclusions: The dose coverage and uniformity for PTV was slightly worse in the KBP for spine SBRT while the dose to the spinal cord was reduced, but the differences were small. Thus, inexperienced planners could easily generate a clinically feasible plan for spine SBRT by using KBP.

3D-Printed Disease Models for Neurosurgical Planning, Simulation, and Training

  • Park, Chul-Kee
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.4
    • /
    • pp.489-498
    • /
    • 2022
  • Spatial insight into intracranial pathology and structure is important for neurosurgeons to perform safe and successful surgeries. Three-dimensional (3D) printing technology in the medical field has made it possible to produce intuitive models that can help with spatial perception. Recent advances in 3D-printed disease models have removed barriers to entering the clinical field and medical market, such as precision and texture reality, speed of production, and cost. The 3D-printed disease model is now ready to be actively applied to daily clinical practice in neurosurgical planning, simulation, and training. In this review, the development of 3D-printed neurosurgical disease models and their application are summarized and discussed.