• Title/Summary/Keyword: 43 kDa protein

Search Result 141, Processing Time 0.037 seconds

Type-I Hypersensitivity to Malassezia pachydermatis Extracts in Healthy Dogs and Dogs with Malasseza Otitis Externa (정상개와 Malassezia 외이염을 가진 개에 있어서 Malassezia pachydermatis 추출물의 즉시형 과민반응)

  • Kim, Young-Sub;Lee, Keun-Woo;Oh, Tae-Ho
    • Journal of Veterinary Clinics
    • /
    • v.24 no.2
    • /
    • pp.88-93
    • /
    • 2007
  • The purpose of the study reported here was to test the hypotheses that clinically healthy dogs will not manifest immediate hypersensitivity responses to intradermal injection of Malassezia pachydermatis extracts but that affected dogs with Malassesia otitis will manifest such hypersensitivity. Wd desired to identify approximate molecular mass of any allergenic components of the yeast by use of sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The protein profile of Malassezia pachydermatis extracts showed between 16 and 110 kDa. Especially, the intensity was strongest between 25 and 80 kDa. Mean wheal diameters in the affected groups of 20, 2, 0.2, and $0.02{\mu}g/ml$ were $13.36{\pm}0.67,\;5.33{\pm}0.67,\;5.47{\pm}0.82,\;and\;5.07{\pm}0.64$, respectively. Mean wheal thickness in the affected groups of 20, 2, 0.2, and $0.02{\mu}g/ml$ was $6.44{\pm}0.40,\;3.86{\pm}0.35,\;2.64{\pm}0.36,\;and\;2.60{\pm}0.44$, respectively. The difference of wheal diameters and thickness between healthy and affected groups was significant (p<0.05). In conclusion, the observations confirm that Malassezia pachydermatis-derived antigens may induce an immediate wheal response when intradermal injected in dogs. It seems reasonable to suggest that hypersensitivity to yeast may contribute to the development of clinical signs in dogs with immediate skin test reactivity, especially in dogs with Malassezia otitis extema.

Lipopolysaccharide-binding protein plasma levels as a biomarker of obesity-related insulin resistance in adolescents

  • Kim, Ki Eun;Cho, Young Sun;Baek, Kyung Suk;Li, Lan;Baek, Kwang-Hyun;Kim, Jung Hyun;Kim, Ho-Seong;Sheen, Youn Ho
    • Clinical and Experimental Pediatrics
    • /
    • v.59 no.5
    • /
    • pp.231-238
    • /
    • 2016
  • Purpose: Lipopolysaccharide-binding protein (LBP) is a 65-kDa acute phase protein, derived from the liver, which is present in high concentrations in plasma. Data regarding the association between circulating plasma LBP levels and obesity-related biomarkers in the pediatric population are scarce. We aimed to determine whether there was a difference in plasma LBP levels between overweight/obese and normal-weight adolescents and to assess the correlation of circulating LBP levels with anthropometric measures and obesity-related biomarkers, including insulin resistance, liver enzyme levels, and lipid profiles. Methods: The study included 87 adolescents aged 12-13 years; 44 were overweight/obese and 43 were of normal-weight. We assessed anthropometric and laboratory measures, including body mass index (BMI), blood pressure, insulin resistance, liver enzyme levels, and lipid profiles. Plasma LBP levels were measured using an enzyme-linked immunosorbent assay. Results: The mean age of the participants was $12.9{\pm}0.3$ years. Circulating plasma LBP levels were significantly increased in overweight/obese participants compared with those in normal-weight participants ($7.8{\pm}1.9{\mu}g/mL$ vs. $6.0{\pm}1.6{\mu}g/mL$, P<0.001). LBP levels were significantly and positively associated with BMI, systolic blood pressure, aspartate aminotransferase, alanine aminotransferase, total cholesterol, low density lipoprotein-cholesterol, fasting glucose and insulin, and insulin resistance as indicated by the homeostatic model assessment of insulin resistance (HOMA-IR) (all P<0.05). In multivariate linear regression analysis, BMI and HOMA-IR were independently and positively associated with plasma LBP levels. Conclusion: LBP is an inflammatory biomarker associated with BMI and obesity-related insulin resistance in adolescents. The positive correlation between these parameters suggests a potentially relevant pathophysiological mechanism linking LBP to obesity-related insulin resistance in adolescents.

Purification of Methioninase from Pseudomonas putida and Its Effect on the Uptake of ^11C-Methionine in Vivo. (Pseudomonas putida 유래 Methioninase의 정제 및 생체내 ^11C-Methionine 섭취에 미치는 영향)

  • 변상성;박귀근
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.4
    • /
    • pp.377-382
    • /
    • 2003
  • Purification of methioninase resulted in a yield of 69%, and SDS-PAGE analysis of the purified product revealed a single band of approximately 43 kDa in molecular weight. in vitro experiments with cancer cells incubated in methionine-free media demonstrated an increase in $^{11}$ C-methionine uptake to 25.8$\pm$1.1% at 6 hr, 31.8$\pm$0.8% at 24 hr, and 62.2$\pm$0.6% at 48hr, compared to controls. Treatment of the cancer cells with purified methioninase showed no decrease in survival after a 2 hr incubation with 0.01 U/ml, but survival of RR1022 cells decreased 30% after 24 to 48 hr incubation. SKOV-3 cells showed a 5% and 14% decrease in survival with 0.1 and 1 U/ml methioninase after 24 hr. After 48hr survival decreased 15% and 24% with 0.1 and 1 U/ml methioninase. Measurements of $^{11}$ C-methionine uptake in RR1022 cells demonstrated no change at 2 hr, but a 13.7$\pm$4.7% and 40.7$\pm$2.6% increase in uptake at 24 and 48 hr, respectively. SKOV-3 cells also showed no change at 2 hr, but had a 17.7$\pm$7.2% and 38.9$\pm$4.9% increase in $^{11}$ C-methionine uptake after 24 hr and 48 hr treatment with methioninase, respectively. $^{11}$ C-methionine PET imaging revealed clear visualization of both the tumors and contralateral infectious lesions. Administration of rMET appeared to result in a slight increase in tumor:nontumor contrast on $^{11}$ C-methionine PET images. Injection of purified methioninase also produced PET images where tumor uptake was higher than that of infectious lesions.

Ultrastructural Change of the Bile Duct Fibroblast at Infected Rat with Clonorchis sinensis (간흡충에 감염된 실험쥐 담관 섬유모세포의 미세구조적 변화)

  • Kim, Soo-Jin;Min, Byoung-Hoon
    • Applied Microscopy
    • /
    • v.34 no.2
    • /
    • pp.121-130
    • /
    • 2004
  • In this study, ultrastructural change of the bile duct fibroblast at infected rat with Clonorchis sinensis, and the distribution of lectin receptors and actin protein in cultured bile duct infected with Clonorchis sinensis. It explored using colloidal gold label complex with lectin WGA purified from wheat germ (Triticum vulgaris) and anti actin antibody purified actin (43 kDa) isolated from chicken back muscle. The lectin WGA with protein A gold complex labeled sections of the cultured fibroblast revealed gold particles specifically distributed on the multi vesicular form Golgi complex and cell surface of the fibroblast. The actin antibody with protein A gold complex labeled sections of the cultured fibroblast revealed gold particles specifically distributed on the cytoplasm of the fibroblast. Labeling of cultured fibroblast in rat bile duct infected with Clonorchis sinensis was then quantified and compared to that of cultured Fibroblast in Rat Bile duct. These results indicate that lectin WGA receptors are located in the multi vesicular form Golgi complex in the cytoplasm to the cytoplasmic process of the Rat bile duct fibroblast infected with Clonorchis sinensis. Therefore, the GlcNAc and NeuNac regions on the cell surface and cytoplasmic process appear to be functionally associated with cell-recognition and protection from other cell of the tissue, and linked with secretion and exocytosis of the fibroblst cytoplasm. GlcNAc and NeuNAc product in the multi vesicular form Golgi complex then it is transported to cell surface. Actin protein is many appears that infected fibroblast rather than normal fibroblast. The fibroblast of infected with Clonorchis sinensis are against of the physical and chemical stimulation. Then development of cytoplasmic process is relative some stimulation.

Prognostic Significance of Overexpression of EZH2 and H3k27me3 Proteins in Gastric Cancer

  • He, Long-Jun;Cai, Mu-Yan;Xu, Guo-Liang;Li, Jian-Jun;Weng, Zi-Jin;Xu, Da-Zhi;Luo, Guang-Yu;Zhu, Sen-Lin;Xie, Dan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3173-3178
    • /
    • 2012
  • The enhancer of zeste homolog 2 (EZH2) methyl transferase and histone 3 lysine 27 (H3K27me3) protein can repress gene transcription, and their aberrant expression has been observed in various human cancers. This study determined their expression levels in gastric cancer tissues with reference to clinicopathological features and patient survival. We collected 117 gastric cancer and corresponding normal tissues for immunohistochemistry analysis. In gastric cancers, 82/117 (70.1%) were positive for EZH2 and 66/117 (56.4%) for H3K27me3 proteins in contrast to only 5.41% and 7.25% of normal gastric mucosa specimens, respectively. Kaplan-Meier survival data showed the average overall and disease-free survival of EZH2 high expression patients was 25.2 and 20.2 months, respectively, shorter than that with EZH2 low expression (40.5 and 35.9 months). The average overall survival and disease-free survival of high H3K27me3 expression patients was 23.4 and 17.4 months, shorter than without H3K27me3 expression (37.6 and 34.5 months). The average overall survival and disease-free survival of patients with both EZH2 and H3K27me3 expression was 18.8 and 12.9 months, respectively, shorter than that with either alone (34.7 and 31.2 months) or with low levels of both (43.9 and 39.9 months). Multivariate Cox regression analysis showed that H3K27me3 and EZH2 expression, tumor size differentiation and clinical stage were all independent prognostic factors for predicting patient survival. This study demonstrated that detection of both EZH2 and H3K27me3 proteins can predict poor survival of gastric cancer patients, superior to single protein detection. In addition, H3K27me3 and EZH2 protein expression could predict lymph node metastasis.

A Study on the Anti-wrinkle Activities of Sesamum indicum L. Ethanol Extracts on CCD-986sk (CCD-986sk 세포 내 참깨 에탄올 추출물의 항주름 활성 연구)

  • Joo, Da-Hye;Yoo, Dan-Hee;Lee, Jin-Young
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.4
    • /
    • pp.377-385
    • /
    • 2016
  • In order to investigate the possibility of Sesamum indicum L. (S. indicum) extract as an active ingredient for wrinkle-care cosmetics, we prepared 70% ethanolic extract of S. indicum and measured its elastase inhibitory activity and collagenase inhibitory activity. We also evaluated the effect of S. indicum extract on protein and mRNA expression of MMPs in fibroblast cell (CCD-986sk). For anti-wrinkle effects, elastase inhibition activities and collagenase inhibition activities were 37.8% and 45% at a dose of $1,000{\mu}g/mL$ of S. indicum 70% ethanol extract. For a cell viability test, measured on fibroblast cell by ethanol extract of S. indicum, results showed 96% with cell viability at $100{\mu}g/mL$ concentration. According to the results of western blot of ethanol extract from S. indicum the expression of the matrix metalloproteinase-1 (MMP-1), matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-3 (MMP-3) protein was decreased by 63%, 43%, 49% at $100{\mu}g/mL$ concentration. Reverse transcription-polymerase chain reaction (PCR) of ethanol extract from S. indicum showed that the expression of MMP-1, MMP-2, MMP-3 mRNA was decreased by 82%, 79%, 82% at $100{\mu}g/mL$ concentration. The findings suggest that 70% ethanol extract from S. indicum has potential as a cosmeceutical ingredient with anti-wrinkle effects.

Molecular Characterization of a Defensin-like Peptide from Larvae of a Beetle, Protaetia brevitarsis

  • Hwang, Jae-Sam;Kang, Bo-Ram;Kim, Seong-Ryul;Yun, Eun-Young;Park, Kwan-Ho;Jeon, Jae-Pil;Nam, Sung-Hee;Suh, Hwa-Jin;Hong, Mee-Yeon;Kim, Ik-Soo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.17 no.1
    • /
    • pp.131-135
    • /
    • 2008
  • A cDNA encoding a defensin-like peptide (Protaetiamycine) from the larvae of a beetle, Protaetia brevitarsis was cloned. The DNAs encoded the deduced propeptide of 79 amino acid residues with the predicted molecular weight of 8.4 kDa and PI of 8.24. Overall amino acid sequence of this protein has 39% similarity to that of Rhodnius prolixus defensin, 43% similarity to that of Acalolepta luxuriosa defensin, and 72% similarity to that of Oryctes rhinoceros defensin, suggesting that this gene is an insect defensin. In an attempt to apply the anti-bacterial peptide to the development of therapeutic agents, a 12-mer peptide amidated at its C-terminus, ACAAHCLAIGRG-$NH_2$ (Ala55-Lys66-$NH_2$, 12Pbn) was synthesized. This peptide showed some antifungal activity against Candida albicans. To increase antifungal activity, six 9-mer peptides were synthesized by modifying amino acid sequences of 12Pbn fragment. Among these peptides, 9Pbm3-9Pbm6 exhibited strong activity compared with Cecropin B and mellitin.

Overexpression, Purification, and Characterization of $\beta$-Subunit of Group II Chaperonin from Hyperthermophilic Aeropyrum pernix K1

  • Shin, Eun-Jung;Lee, Jin-Woo;Kim, Jeong-Hwan;Jeon, Sung-Jong;Kim, Yeon-Hee;Nam, Soo-Wan
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.542-549
    • /
    • 2010
  • In the present study, overexpression, purification, and characterization of Aeropyrum pernix K1 chaperonin B in E. coli were investigated. The chaperonin $\beta$-subunit gene (ApCpnB, 1,665 bp ORF) from the hyperthermophilic archaeon A. pernix K1 was amplified by PCR and subcloned into vector pET21a. The constructed pET21a-ApCpnB (6.9 kb) was transformed into E. coli BL21 Codonplus (DE3). The transformant cell successfully expressed ApCpnB, and the expression of ApCpnB (61.2 kDa) was identified through analysis of the fractions by SDS-PAGE (14% gel). The recombinant ApCpnB was purified to higher than 94% by using heat-shock treatment at $90^{\circ}C$ for 20 min and fast protein liquid chromatography on a HiTrap Q column step. The purified ApCpnB showed ATPase activity and its activity was dependent on temperature. In the presence of ATP, ApCpnB effectively protected citrate synthase (CS) and alcohol dehydrogenase (ADH) from thermal aggregation and inactivation at $43^{\circ}$ and $50^{\circ}$, respectively. Specifically, the activity of malate dehydrogenase (MDH) at $85^{\circ}$ was greatly stabilized by the addition of ApCpnB and ATP. Coexpression of pro-carboxypeptidase B (pro-CPB) and ApCpnB in E. coli BL21 Codonplus (DE3) had a marked effect on the yield of pro-CPB as a soluble and active form, speculating that ApCpnB facilitates the correct folding of pro-CPB. These results suggest that ApCpnB has both foldase and holdase activities and can be used as a powerful molecular machinery for the production of recombinant proteins as soluble and active forms in E. coli.

Purification and Characterization of NADPH-Dependent Cr(VI) Reductase from Escherichia coli ATCC 33456

  • Bae, Woo-Chul;Lee, Han-Ki;Choe, Young-Chool;Jahng, Deok-Jin;Lee, Sang-Hee;Kim, Sang-Jin;Lee, Jung-Hyun;Jeong, Byeong-Chul
    • Journal of Microbiology
    • /
    • v.43 no.1
    • /
    • pp.21-27
    • /
    • 2005
  • A soluble Cr(VI) reductase was purified from the cytoplasm of Escherichia coli ATCC 33456. The molecular mass was estimated to be 84 and 42 kDa by gel filtration and SDS-polyacrylamide gel electrophoresis, respectively, indicating a dimeric structure. The pI was 4.66, and optimal enzyme activity was obtained at pH 6.5 and $37^{\circ}C$. The most stable condition existed at pH 7.0. The purified enzyme used both NADPH and NADH as electron donors for Cr(VI) reduction, while NADPH was the better, conferring 61% higher activity than NADH. The $K_m$ values for NADPH and NADH were determined to be 47.5 and 17.2 umol, and the $V_max$ values 322.2 and 130.7 umol Cr(VI) $min^{-1}mg^{-1}$ protein, respectively. The activity was strongly inhibited by N-ethylmalemide, $Ag^{2+},\;Cd^{2+},\;Hg^{2+}$, and $Zn^{2+}$. The antibody against the enzyme showed no immunological cross reaction with those of other Cr(VI) reducing strains.

Flagellin-Stimulated Production of Interferon-β Promotes Anti-Flagellin IgG2c and IgA Responses

  • Kang, Wondae;Park, Areum;Huh, Ji-Won;You, Gihoon;Jung, Da-Jung;Song, Manki;Lee, Heung Kyu;Kim, You-Me
    • Molecules and Cells
    • /
    • v.43 no.3
    • /
    • pp.251-263
    • /
    • 2020
  • Flagellin, a major structural protein of the flagellum found in all motile bacteria, activates the TLR5- or NLRC4 inflammasome-dependent signaling pathway to induce innate immune responses. Flagellin can also serve as a specific antigen for the adaptive immune system and stimulate anti-flagellin antibody responses. Failure to recognize commensal-derived flagellin in TLR5-deficient mice leads to the reduction in anti-flagellin IgA antibodies at steady state and causes microbial dysbiosis and mucosal barrier breach by flagellated bacteria to promote chronic intestinal inflammation. Despite the important role of anti-flagellin antibodies in maintaining the intestinal homeostasis, regulatory mechanisms underlying the flagellin-specific antibody responses are not well understood. In this study, we show that flagellin induces interferon-β (IFN-β) production and subsequently activates type I IFN receptor signaling in a TLR5- and MyD88-dependent manner in vitro and in vivo. Internalization of TLR5 from the plasma membrane to the acidic environment of endolysosomes was required for the production of IFN-β, but not for other pro-inflammatory cytokines. In addition, we found that anti-flagellin IgG2c and IgA responses were severely impaired in interferon-alpha receptor 1 (IFNAR1)-deficient mice, suggesting that IFN-β produced by the flagellin stimulation regulates anti-flagellin antibody class switching. Our findings shed a new light on the regulation of flagellin-mediated immune activation and may help find new strategies to promote the intestinal health and develop mucosal vaccines.