• Title/Summary/Keyword: 400km/h test-bed

Search Result 8, Processing Time 0.02 seconds

Running Performance Analysis to Determine Optimal Test-bed Section for the Maximum Speed of 400km/h (400km/h 운행 최적 시범구간 선정을 위한 주행성능해석)

  • Chung, Heung-Chai;Eum, Ki-Young;Yun, Jang-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2594-2599
    • /
    • 2011
  • In Korea, the HEMU-400X(High-speed Electric Multiple Unit-400km/h eXpress) has been developed since 2007 and will be operated over 400km/h in 2013. It is necessary to prepare test-bed section in Honam high-speed railroad to take the maxim running speed test for the HEMU-400X developed. In order to determine proper test-bed sections for the maximum speed of 400km/h, TPS(Train Performance Simulation) program with the data of train model, running resistance, traction power and braking capacity was used to analyze the train performances such as locations, speeds and power consumptions by times. In this study, the specifications of the HEMU-400X project and the route conditions of the Honam high-speed railroad under construction were utilized for the TPS program to determine the optimal test-bed sections for the maximum speed of 400km/h.

  • PDF

Simulation and Testing of the Effect of Current Collection Performance According to Pre-sag in 400km/h Overhead Contact Lines (400km/h 전차선로에서 사전이도가 집전성능에 미치는 영향에 대한 시뮬레이션 및 시험)

  • Kwon, Sam Young;Cho, Yong Hyeon;Lee, Kiwon;Oh, Hyuck Keun
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.3
    • /
    • pp.288-296
    • /
    • 2016
  • A 400km/h simple catenary system was constructed as a test line in Korea. In the design stage of this system, the pre-sag was one of the engineering issues most focused on. It is known that the pre-sag improves the current collection performance in a certain band of high speed. However, the effect of pre-sag at 400km/h has not yet been established. To grasp a better pre-sag in the 400km/h catenary, we transacted the dynamic performance prediction simulation between catenary and pantograph under conditions of 0 and 1/3000 pre-sag. The level of 0 pre-sag was adapted for the 400km/h catenary design after reviewing predictions. We constituted the 1/3000 pre-sag sample section (about 1km) while constructing the 400km/h catenary test-bed (28km) of 0 pre-sag. With a HEMU-430X train, the contact forces were measured in the test-bed including the pre-sag sample section. In this paper, the predicted and measured dynamic performance values (contact forces) for 0 and 1/3000 pre-sag are described and compared. It is conclusively confirmed by analytical and experimental examination that the non pre-sag showed better dynamic (current collection) performance than that of the 1/3000 pre-sag for the 400km/h catenary system.

Maximum Moment Calculation in Order to Assure a Mast Foundation Strength in a Test-Bed for the Maximum Speed of 400 km/h (400km/h급 Test-Bed 교량 구간 단독주 기초 강도검토를 위한 최대 모멘트 계산)

  • Lee, Ki-Won;Kwon, Sam-Young;Cho, Yong-Hyeon;Chung, Heung-Chai;Park, Young
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1497-1502
    • /
    • 2011
  • Increasing tensions of contact wire and messenger wire are essential to construct a test-bed for catenary system in the 400km/h speed on Honam high-speed railway. Because heavy load is applied to a mast due to the increased the tensions of both wires it is required to investigate the strength of the foundation. Therefore, in this study the maximum moment of an electric pole under the worst condition was calculated to investigate the strength of the pole foundation on the bridges. The maximum moment database table used in the construction of Kyungbu high-speed railway was referenced to derive the worst conditions and to review the composition of catenary system in the test-bed section. From the results of this study regarding assumptions and calculation process it will be possible to estimate the optimized strength of the pole foundations on the bridges which will be constructed in the future.

  • PDF

Development of a Steady Arm for the Maximum Speed of 400 km/h (400 km/h급 전차선로 곡선당김금구 개발)

  • Lee, Kiwon;Park, Young;Kwon, Sam-Young;Cho, Yong Hyeon;Jeong, Heonsoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.12
    • /
    • pp.1742-1746
    • /
    • 2014
  • In order to develop a overhead catenary system for the maximum speed of 400 km/h on Honam high-speed line, increasing tension of contact wire, changing dropper distributions, reducing a hard point and etc. should be considered. And it is also essential to develop core components taking account of the increased tension. Therefore we developed a new steady arm for the max. speed of 400 km/h in this study. FEM (Finite Elements Method) analysis was performed to ensure the strength of the arm. An oval shape was applied to the arm, so that 25 % of strength was increased and 9 % of weight was decreased. And a type test according to the code KRSA-3012 was performed to ensure the performance. Fatigue test in KRRI (Korea Railroad Research Institute)'s test-bed was also performed to evaluate its performance. Some section of the Honam High-speed line was constructed with the developed steady arm.

User-centric Scalability Measurement System of Large-Scale Measurement Data for 400km/h High-Speed Railway (400km/h 고속철도 대규모 계측데이터 사용자 중심 확장성 계측시스템)

  • Hwang, Kyung-Hun;Park, Sun-Kyu;Song, Byung-Keun;Yang, OK-Yul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1157-1163
    • /
    • 2014
  • Needs for a new technologies of infrastructure systems arose, following the development of next generation EMU(Electric Multiple Unit) train with maximum speed over 400km/h. For high-speed operation tests of the new EMU, a high-speed railway infrastructure test-bed was constructed in a 28km long section of the Honam High-speed Railway. Diverse sensors and monitoring system was installed for continuous monitoring of the railway. Due to such effort, further demands and needs of the integrated monitoring system was derived in a more comprehensive and long-term perspective.

Development of Integrated Monitoring Middleware System for 400km/h High Speed Railway Measurement Data (400km/h급 고속철도 계측데이터 통합 모니터링 미들웨어 시스템 개발)

  • Hwang, KyungHun;Na, JunSu;Song, ByungKeun;Yang, OKYul
    • Convergence Security Journal
    • /
    • v.13 no.6
    • /
    • pp.61-68
    • /
    • 2013
  • Needs for a new technologies of infrastructure systems arose, following the development of next generation EMU(Electric Multiple Unit) train with maximum speed over 400km/h. For high-speed operation tests of the new EMU, a high-speed railway infrastructure test-bed was constructed in a 28km long section of the Honam High-speed Railway. Diverse sensors and monitoring system was installed for continuous monitoring of the railway. Due to such effort, further demands and needs of the integrated monitoring system was derived in a more comprehensive and long-term perspective.

Research on Configuration Optimization of Overlap Section in Overhead Catenary System for High-speed Railway (전차선로 속도향상에 따른 오버랩 구간(Overlap section) 경간 구성 기법)

  • Choi, Tae-su;Choi, Kyu-Hyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.6
    • /
    • pp.975-980
    • /
    • 2017
  • Overhead catenary system of electric railway has overlap sections which devide and tighten trolley wire supplying electric power to train, where current collection performances may become worse according to railway speed-up. Current collection tests conducted at 400 km/h test-bed section of Honam high-speed railway show that balanced line arrangement at overlap section is needed to secure current collection without arc generation between trolley wire and train current collection device. This paper proposes a design procedure of the overlap section to allow for tension increase and uplift of the trolley wires according to railway speed-up. By applying the proposed procedure to the overhead catenary system of Honam high-speed railway, it is suggested that the minimum span length should be 33.2 m for railway speed-up to 350 km/h and 43.7 m for speed-up to 400 km/h.

Mobile Hotspot Network System for High-Speed Railway Communications Using Millimeter Waves

  • Choi, Sung-Woo;Chung, Heesang;Kim, Junhyeong;Ahn, Jaemin;Kim, Ilgyu
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1052-1063
    • /
    • 2016
  • We propose a millimeter wave (MMW)-based mobile hotspot network (MHN) system for application in high-speed railways that is capable of supporting a peak backhaul link throughput of 1 Gbps per train at 400 km/h. The MHN system can be implemented in subways and high-speed trains to support passengers with smart devices and provide access to the Internet. The proposed system can overcome the inherent high path loss in MMW through system designs and high antenna gains. We present a simulation of the system performance that shows that a fixed beamforming strategy can provide high signal-to-interference-plus-noise-ratio similar to those of an adaptive beamforming strategy, with the exception of 15% of the train path in which the network can use link adaptation with low-order modulation formats or trigger a handover to maintain the connection. We also demonstrate the feasibility of the MHN system using a test bed deployed in Seoul subway line 8. The backhaul link throughput varies instantaneously between 200 Mbps and 500 Mbps depending on the SNR variations while the train is running. During the field trial, the smartphones used could make connections through offloading.