• Title/Summary/Keyword: 4-switch buck-boost converter

Search Result 13, Processing Time 0.038 seconds

Analysis, Design and Development of a Single Switch Flyback Buck-Boost AC-DC Converter for Low Power Battery Charging Applications

  • Singh, Bhim;Chaturvedi, Ganesh Dutt
    • Journal of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.318-327
    • /
    • 2007
  • The design and performance analysis of a power factor corrected (PFC), single-phase, single switch flyback buck-boost ac-dc converter is carried out for low power battery charging applications. The proposed configuration of the flyback buck-boost ac-dc converter consists of only one switch and operates in discontinuous current mode (DCM), resulting in simplicity in design and manufacturing and reduction in input current total harmonic distortion (THD). The design procedure of the flyback buck-boost ac-dc converter is presented for the battery charging application. To verify and investigate the design and performance, a simulation study of the flyback buck-boost converter in DCM is performed using the PSIM6.0 platform. A laboratory prototype of the proposed single switch flyback buck-boost ac-dc converter is developed and test results are presented to validate the design and developed model of the system.

A Cost Effective DC Link Variable Inverter Using 2-Switch Buck-Boost Converter (2-스위치 Buck-Boost 컨버터를 이용한 DC 링크 전압 가변형 인버터 설계)

  • Kang, Hyun-Soo;Kim, Jun-Hyung;Lee, Byoung-Kuk;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.950-959
    • /
    • 2009
  • In this paper, a dc link voltage variable inverter system is proposed, which consists of a two-switch buck-boost converter and a four-switch inverter. In addition, as the current and torque ripples are generated by a voltage difference between back EMF and dc link voltage, these ripples could be reduced according to the controlled dc-link voltage according to the motor speed. The validity of the proposed inverter is verified by informative simulation and experimental results.

A Design of Current-mode Buck-Boost Converter using Multiple Switch with ESD Protection Devices (ESD 보호 소자를 탑재한 다중 스위치 전류모드 Buck-Boost Converter)

  • Kim, Kyung-Hwan;Lee, Byung-Suk;Kim, Dong-Su;Park, Won-Suk;Jung, Jun-Mo
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.330-338
    • /
    • 2011
  • In this paper, a current-mode buck-boost converter using Multiple switching devices is presented. The efficiency of the proposed converter is higher than that of conventional buck-boost converter. In order to improve the power efficiency at the high current level, the proposed converter is controlled with PWM(pulse width modulation) method. The converter has maximum output current 300mA, input voltage 3.3V, output voltage from 700mV to 12V, 1.5MHz oscillation frequency, and maximum efficiency 90%. Moreover, this paper proposes watchdog circuits in order to ensure the reliability and to improve the performance of dc-dc converters. An electrostatic discharge(ESD) protection circuit for deep submicron CMOS technology is presented. The proposed circuit has low triggering voltage using gate-substrate biasing techniques. Simulated result shows that the proposed ESD protection circuit has lower triggering voltage(4.1V) than that of conventional ggNMOS(8.2V).

Development of PV Module Integrated Type Low Voltage Battery Charger using Cascaded Buck-Boost Converter (Cascaded Buck-Boost 컨버터를 이용한 태양광 모듈 집적형 저전압 배터리 충전 장치 개발)

  • Kim, Dong-Hee;Lee, Hee-Seo;Lee, Young-Dal;Lee, Eun-Ju;Lee, Tae-Won;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.471-477
    • /
    • 2012
  • In this paper, in order to use module integrated converter using cascaded buck-boost converter for a low battery charger in stand-alone system, a charging algorithm which considers photovoltaic and battery status and PWM controllers which are changed according to charging modes are proposed. The proposed algorithm consists of constant current mode, constant voltage mode and maximum power point tracking mode which enables the battery to charge with maximum power rate. This paper also presents design of cascaded buck-boost converter that is the photovoltaic charger system. A 150W prototype system is built according to verify proposed the charger system and the algorithm.

New Isolated Single-Phase AC-DC Converter for Universal Input Voltage

  • Lee, Ming-Rong;Yang, Lung-Sheng;Lin, Chia-Ching
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.592-599
    • /
    • 2013
  • This paper investigates a new isolated single-phase AC-DC converter, which integrates a modified AC-DC buck-boost converter with a DC-DC forward converter. The front semi-stage is operated in discontinuous conduction mode (DCM) to achieve an almost unity power factor and a low total harmonic distortion of the input current. The rear semi-stage is used for step-down voltage conversion and electrical isolation. The front semi-stage uses a coupled inductor with the same winding-turn in the primary and secondary sides, which is charged in series during the switch-on period and is discharged in parallel during the switch-off period. The discharging time can be shortened. In other words, the duty ratio can be extended. This semi-stage can be operated in a larger duty-ratio range than the conventional AC-DC buck-boost converter for DCM operation. Therefore, the proposed converter is suitable for universal input voltage (90~264 $V_{rms}$) and a wide output-power range. Moreover, the voltage stress on the DC-link capacitor is low. Finally, a prototype circuit is implemented to verify the performance of the proposed converter.

Bidirectional dc-to-dc Converter Employing Dual Inductor for Current Ripple Reduction (전류 리플 저감을 위한 듀얼 인덕터 방식의 양방향 dc-to-dc 컨버터)

  • Lee, Gi Yeong;Kang, Feel-soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.531-537
    • /
    • 2018
  • This paper propose a bidirectional dc-to-dc converter employing dual inductor for current ripple reduction. Conventional bidirectional dc-to-dc converter uses a single inductor for two different modes; boost and buck; therefore it is difficult to satisfy the optimized inductance value for each mode. To improve this problem, the proposed converter adds two switches, a diode, and one inductor. By proper switching of the additional switch, the proposed converter operates with a inductor in boost mode, but it works with dual inductor in buck mode. Hence in both modes the proposed bidirectional converter can be operated with optimized inductance values. Most of all the optimized inductance in buck mode can reduce the current ripple and its effective value(rms), which are directly related to the temperature increase resulted in short lifetime of battery. To verify the validity of the proposed approach, we first analyzes the operation of the proposed converter theoretically, and implement computer-aided simulations and experiments using a prototype.

High Step-Up Converter with Hybrid Structure Based on One Switch

  • Hwu, K.I.;Peng, T.J.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1566-1577
    • /
    • 2015
  • A novel high step-up converter is presented herein, which combines the conventional buck-boost converter, the charge pump capacitor and the coupling inductor. By doing so, a quite high voltage conversion ratio due to not only the turns ratio but also the duty cycle, so as to increase design feasibility. It is noted that the denominator of the voltage conversion ratio is the square of one minus duty cycle. Above all, there is no voltage spike across the switch due to the leakage inductance and hence no passive or active snubber is needed, and furthermore, the used switch is driven without isolation and hence the gate driving circuit is relatively simple, thereby upgrading the industrial application capability of this converter. In this paper, the basic operating principles and the associated mathematical deductions are firstly described in detail, and finally some experimental results are provided to demonstrate the effectiveness of the proposed high step-up converter.

Design of Cost Effective PAM Inverter using 2-Switch Buck-Boost Converter (2-스위치 Buck-Boost 컨버터를 이용한 저가형 PAM 인버터 설계)

  • Kim, Jun-Hyung;Kang, Hyun-Soo;Lee, Byoung-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.892-893
    • /
    • 2008
  • 본 논문에서는, 기존의 PAM 인버터와는 달리 저 단가 구현 및 높은 성능을 낼 수 PAM 인버터 구조에 대해 고찰한다. 배터리를 전원으로 사용하는 일반적인 인버터의 경우 초기기동 및 저속운전 영역에서는 배터리 전압으로 인해 전류 및 토크 리플이 크며, 배터리 SOC의 최소치 보다 낮은 역기전력을 갖는 전동기만을 사용할 수 있다. 이를 해결하기 위해 2-스위치 Buck-Boost 컨버터와 4-스위치 인버터로 구성된 새로운 PAM 인버터 시스템을 제안한다. 제안된 시스템은 DC 링크 가변을 통해 역기전력이 낮은 저속운전영역에서는 감압하고 반대로 역기전력이 높은 고속운전영역에서는 승압시킬 수 있어 전류 및 토크 리플을 줄일 수 있다. 마지막으로 시뮬레이션을 통하여 제안된 시스템의 적용 가능성을 검증한다.

  • PDF

A Multi-Load Shoring Characteristic Using Novel Buck-Boost Chopper Circuit (새로운 승·강압 초퍼 회로를 이용한 부하 다분할 특성)

  • Suh, Ki-Young;Mun, Sang-Pil;Kwon, Soon-Kurl;Lee, Hyun-Woo;Jung, Sang-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.2
    • /
    • pp.42-48
    • /
    • 2005
  • A DC-DC converter is being widely used for various household appliances and for industry applications. The DC-CC converter is powered from single battery, and the voltage is varied according to the purpose. In the vehicle, various accessories whose electric power is different are being un4 Thus, plural number of DC-DC converter should be provided, so these situations bring complicated circuits, and accordingly, higher cost. Under such backgrounds, in this paper, we propose a novel buck-boost chopper circuit with simply configuration which can supply to two or more different output loads. The propose chewer circuit can control output voltages by controlling duty ratio by using typically two switching devices, which is composed by single boost-switch and single buck-switch. The output voltage can be controlled widely. A few modified circuits developed from the fundamental circuit are represented including the general multi-load circuit. And all this merits and appropriateness was proved by computer simulation and experience.

The DC/DC Converter having the current source applying the new switching pattern (새로운 스위치 패턴을 적용한 전류원을 갖는 DC/DC 컨버터)

  • Kim, Sun-Pil;Ko, Hyun-Swok;Kim, Se-Min;Park, Seong-Mi;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.4
    • /
    • pp.275-284
    • /
    • 2017
  • As the high-level of the industrial and information age, the electricity become the indispensable element in the daily life including OA, FA, and computer, electric home appliances, and etc. In particular, The continuous use of the high capacity power supply system by applying a Switching Mode Power Supply(SMPS) according to the increase of the secondary side output terminal of the power load of the refrigerator of the home appliance or automation of the plant is pressed. The purpose using the way with this kind of high-capacity altogether is to supply the output voltage and output current regardless of the input voltage or to the external environmental conditions of the secondary-side load fluctuation. In this paper, a combination of a Buck Converter with Boost Converter by making a constant current source to control the inductor current and maintain stable power supply side operating characteristics, when load variations. While maintaining the same characteristics as conventional Buck Converter, and offer a DC-DC Converter system with the new switch pattern having a wide output range capable of operating in Buck-Boost Converter. In addition, after theoretical analysis, we carry out simulations and experiments to verify the validity and performance comparing with a conventional DC-to-DC converter.