• 제목/요약/키워드: 4-stroke engine

검색결과 175건 처리시간 0.02초

양단자 회로망 분석을 이용한 기관배기계의 압력파 전달특성에 관한 연구 (A study of the transfer characteristics of pressure waves using two-port network analysis in exhaust system of engine)

  • 이준서;유병구;차경옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권1호
    • /
    • pp.77-84
    • /
    • 1998
  • Based on experimental analysis, the characteristics of pulsating pressure wave propagation is clarified by testing of 4-stroke gasoline engine. The pulsating pressure wave in exhaust system is generated by pulsating gas flow due to working of exhaust valve. The pulsating pressure wave is closely concerned to the loss of engine power according to back pressure and exhaust noise. It is difficult to exactly calculate pulsating pressure wave propagation in exhaust system because of nonlinear effect. Therefore, in the first step for solving these problems, this paper contains experimental model and analysis method which are applied two-port network analysis. Also, it shows coherence function, frequency response function, back pressure, and gradient of temperature in exhaust system.

  • PDF

초음파 연료공급장치용 가솔린 자동차의 성능향상에 관한 연구(II) (A Study on the Performance Improvement of the Ultrasonic Fuel Supply Device Type Gasoline Automobile(II))

  • 최두석;설진호;류정인
    • 오토저널
    • /
    • 제15권3호
    • /
    • pp.47-54
    • /
    • 1993
  • This paper describes briefly the effect of ultrasonic fuel supply device on the performance of four stroke cycle gasoline engine. Experiments were carried out to clarify the effect of ultrasonic fuel supply device on the engine output, traveling fuel consumption ratio, exhaust emissions. The results were obtained as follows: 1.Engine output was increased 9-14% in comparison with that of the conventional injector. 2.Travelling fuel consumption ratio was improved 17-29% in comparison with that of the conventional injector. 3. CO, HC exhaust emissions was decreased compared to the value of the conventional injector. 4.Fuel consumption ratio in highway driving test was improved about 10% in comparison with that of the conventional injector.

  • PDF

고무 탄성커플링을 갖는 선박 추진용 축계 비틀림의 동특성 (Dynamic Characteristics of torsion for Marine Propulsion Shafting system with Elastic Rubber Coupling)

  • 이돈출;김상환;유정대
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.742-748
    • /
    • 2003
  • As for marine propulsion shafting system using 4 stroke diesel engine, it is common to apply reduction gear box between diesel engine and shafting with a view of increasing mechanical efficiency, which inevitably require elastic coupling due to avoid chattering and hammering inside of gear box. In this study, optimum method of rectifying propulsion shafting system in case of 750ton fishing vessel specially in a view of torsional vibration, is theoretically studied. After exchange of diesel engine and gear box, analysis result of torsional vibration get worse and so some countermeasure are needed. The elastic coupling is modified from present block type rubber coupling showing relatively high torsional stiffness to rubber coupling with two series elements directly connected. The vibration measurement using two laser torsion meters was done during sea trial, whose results are compared to those of calculation and verified.

  • PDF

점화기관 배기계의 압력과 전파특성에 관한 연구 (A Study on the Characteristics of Pressure Wave Propagation in Spark Ignition Engine Exhaust System)

  • 박진용
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 춘계학술대회 논문집
    • /
    • pp.72-78
    • /
    • 1996
  • Based on experimental analysis, the characteristics of pulsating pressure wave propagation is clarified by testing of 4-stroke gasoline engine. The pulsating pressure wave in exhaust system is generated gyulsating gas flow due the working of exhaust valve. The pulsating pressure wave is closely concerned to the loss of engine power according to back pressure and exhaust noise. It is difficult to exactly calculate pulsating pressure wave nonlinear effect. Therefore, in the first step for solving these problems, this paper contains experimental model and analysis method which are applied two-port network analysis. Also, it shows coherence function, frequency response function. back pressure, and gradient of temperature in exhaust system.

  • PDF

INFLUENCE OF THE MIXING RATIO OF DOUBLE COMPONENTIAL FUELS ON HCCI COMBUSTION

  • Sato, S.;Kweon, S.P.;Yamashita, D.;Iida, N.
    • International Journal of Automotive Technology
    • /
    • 제7권3호
    • /
    • pp.251-259
    • /
    • 2006
  • For practical application on the HCCI engine, the solution of subjects, such as control of auto-ignition timing and avoidance of knocking, is indispensable. This study focused on the technique of controlling HCCI combustion appropriately, changing the mixture ratio of two kinds of fuel. Methane and DME/n-Butane were selected as fuels. The influences, which the mixing ratio of two fuels does to ignition timing, ignition temperature, rate of heat release and oxidation reaction process, were investigated by experiment with 4-stroke HCCI engine and numerical calculation with elementary reactions.

기관 배기계 모의실험장치를 이용한 밸브를 통과하는 유동특성에 관한 연구 (A Study on the Characteristics of Flow through a Valve using Exhaust System Engine Simulator)

  • 차경옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권2호
    • /
    • pp.124-130
    • /
    • 1999
  • Flow characteristics of a compressible gas flow through a rotating disc-type rotary valve are investigated experimentally under various conditions. It is known that the mass flow rate through poppet valves of 4-stroke cycle engines and through piston valves of 2-stoke cycle engines decrease with increase in engine speed. Rotary valve is one means by which air may be made to flow inter-mittently through a pipe. In this paper an exhaust system simulator of engine was used to experi-mentally analyze the decrease in flow rate at high rotation speeds and to determine what variables other than rotational speed give rise to the observed behaviour. These variables have been included in an empirical equation which is representative of the measured flow characteristics.

  • PDF

자동차 배기계의 압력파 전파특성에 관한 연구 (A Study on the Characteristics of Pressure Wave Propagation in Automotive Exhaust System)

  • 차경옥;이준서;김형섭
    • 한국자동차공학회논문집
    • /
    • 제4권4호
    • /
    • pp.18-26
    • /
    • 1996
  • Based on experimental analysis, the characteristics of pulsating pressure wave propagation is clarified by testing of 4-stroke gasoline engine. The pulsating pressure wave in exhaust system is generated by pulsating gas flow due to working of exhaust valve. The pulsating pressure wave is closely concerned to the loss of engine power according to back pressure and exhaust noise. It is difficult to exactly calculate pulsating pressure wave propagation in exhaust system because of nonlinear effect. Therefore, in the first step for solving these problems, this paper contains experimental model and analysis method which are applied two-port network analysis. Also, it shows coherence function, frequency response function, back pressure, and gradient of temperature in exhaust system.

  • PDF

디이젤기관의 방열에 관한 연구 (A study on the heat dissipation of diesel engine)

  • 이창식
    • 오토저널
    • /
    • 제2권1호
    • /
    • pp.39-50
    • /
    • 1980
  • This paper presents the variations obtained in heat flow rate and engine performance of a four-stroke cycle Diesel engine when there were changes in the temperature of cooling water, compression ratio, injection timing of fuel, and other factors. Heat dissipation of engine cylinder was calculated by the heat transfer coefficient of Nusselt's empirical equation and the analysis of distribution of temperature in cylinder barrel was obtained by the finite element method of two-dimensional steady state heat conduction. In this experiment, the out side temperature of cylinder liner was measured by the data logger, and the temperature distribution of liner was computed by the analysis of triangular finite element model under the assumption due to surface heat flux of cylinder inner surface. The results obtained by this study are as follows. Under the given operating condition, the temperature distribution of cylinder liner by using finite element method shows that the mean temperature of barrel is in accordance with the experimental results of Eichelberg and temperature difference is lower than 4.23.deg. C. The heat dissipation of engine decrease in accordance with the decrease of piston mean velocity, compression ratio, and the increase of coolant temperature. Influence on the delay of injection timing of fuel brings about the decrease of heat rejection over the cylinder at constant test conditions.

  • PDF

직분사 디젤 엔진에서 1-옥탄올/경유 혼합 연료의 연소 및 배기 특성 연구 (Investigation of the Combustion and Emission Characteristics of 1-Octanol/Diesel Fuel Blends in a Direct Injection Diesel Engine)

  • 박철오;양정현;김범수;권재성
    • 한국수소및신에너지학회논문집
    • /
    • 제34권1호
    • /
    • pp.69-76
    • /
    • 2023
  • An experimental study was conducted on a 4-stroke direct injection diesel engine to examine the combustion and emission characteristics of 1-octanol/diesel fuel blends. The concentration of 1-octanol in the fuel blends was 10%, 30%, and 50% by volume. Experiments were conducted by varying the engine torque from 6 Nm to 12 Nm at the same engine speed of 2,700 rpm. Results showed that the fuel conversion efficiency increased as the 1-octanol proportion increased under most experimental conditions. However, the brake specific fuel consumption increased due to the relatively low lower heating value of 1-octanol. The smoke opacity and the concentrations of NOx and CO emissions generally decreased with brake mean effective pressure as the 1-octanol proportion increased. On the other hand, the unburned hydrocarbon concentration increased with an ascending ratio of 1-octanol.

4행정 터어보과급 자동차용 디이젤 엔진의 통합과급방식의 개발 (Development of an Integrated Charging System for 4 Stroke Turbocharged Automotive Diesel Engine)

  • ;오세종;정선국;이동인
    • 대한기계학회논문집
    • /
    • 제8권1호
    • /
    • pp.79-85
    • /
    • 1984
  • 터어보과급 디이젤 엔진의 저속 및 급가속영역에서 발생하는 매연의 배출을 억제하기 위하여 흡 입 공기량을 증가시키는 방안으로서 흡기관의 동적효과를 이용하기 위한 통합과급 시스템을 개발 하였다. 동조회전수에 있어서 음향임피던스 방법에 의하여 공명흡기관의 칫수를 결정하였고 흡입 공기 냉각기를 부착하여 전 회전영역에서의 흡입공기 밀도비를 증가시켰다. 기존 엔진을 변형한 두가지 시스템을 설계하여 성능측정을 하였으며, 이들에 대한 비교 및 실용성에 관해 자세히 언 급하였다.