• Title/Summary/Keyword: 4-layer Graphene

Search Result 111, Processing Time 0.033 seconds

Thick Graphene Embedded Metal Heat Spreader with Enhanced Thermal Conductivity

  • Park, Minsoo;Chun, Kukjin
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.234-237
    • /
    • 2014
  • In this paper, a copper foil-thick grapheme (thin graphite sheet)-copper foil structure is reported to achieve mechanically strong and high thermal conductive layer suitable for heat spreading components. Since graphene provides much higher thermal conductivity than copper, thick graphene embedded copper layer can achieve higher effective thermal conductivity which is proportional to graphene/copper thickness ratio. Since copper is nonreactive with carbon material which is graphene, chromium is used as adhesion layer to achieve copper-thick graphene-copper bonding for graphene embedded copper layer. Both sides of thick graphene were coated with chromium as an adhesion layer followed by copper by sputtering. The copper foil was bonded to sputtered copper layer on thick graphene. Angstrom's method was used to measure the thermal conductivity of fabricated copper-thick graphene-copper structure. The thermal conductivity of the copper-thick graphene-copper structures is measured as $686W/m{\cdot}K$ which is 1.6 times higher than thermal conductivity of pure copper.

Conformal Zinc Oxide Thin Film Deposition on Graphene using molecular linker by Atomic Layer Deposition

  • Park, Jin-Seon;Han, Gyu-Seok;Jo, Bo-Ram;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.280.2-280.2
    • /
    • 2016
  • The graphene, a single atomic sheet of graphite, has attracted tremendous interest owing to its novel properties including high intrinsic mobility, optical transparency and flexibility. However, for more diverse application of graphene devices, it is essential to tune its transport behavior by shifting Dirac Point (DP) of graphene. So, in the following context, we suggest a method to tune structural and electronic properties of graphene using atomic layer deposition. By atomic layer deposition of zinc oxide (ZnO) on graphene using 4-mercaptophenol as linker, we can fabricate n-doped graphene. Through ${\pi}-{\pi}$ stacking between chemically inert graphene and 4-mercaptophenol, conformal deposition of ZnO on graphene was enabled. The electron mobility of graphene TFT increased more than 3 times without considerably decreasing the hole mobility, compared to the pristine graphene. Also, it has high air stability. This ZnO doping method by atomic layer deposition can be applicable to large scale array of CVD graphene TFT.

  • PDF

Resistance Switching Mechanism of Metal-Oxide Nano-Particles Memory on Graphene Layer

  • Lee, Dong-Uk;Kim, Dong-Wook;Kim, Eun-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.318-318
    • /
    • 2012
  • A graphene layer is most important materials in resent year to enhance the electrical properties of semiconductor device due to high mobility, flexibility, strong mechanical resistance and transparency[1,2]. The resistance switching memory with the graphene layer have been reported for next generation nonvolatile memory device[3,4]. Also, the graphene layer is able to improve the electrical properties of memory device because of the high mobility and current density. In this study, the resistance switching memory device with metal-oxide nano-particles embedded in polyimide layer on the graphene mono-layer were fabricated. At first, the graphene layer was deposited $SiO_2$/Si substrate by using chemical vapor deposition. Then, a biphenyl-tetracarboxylic dianhydride-phenylene diamine poly-amic-acid was spin coated on the deposited metal layer on the graphene mono-layer. Then the samples were cured at $400^{\circ}C$ for 1 hour in $N_2$ atmosphere after drying at $135^{\circ}C$ for 30 min through rapid thermal annealing. The deposition of aluminum layer with thickness of 200 nm was done by a thermal evaporator. The electrical properties of device were measured at room temperature using an HP4156a precision semiconductor parameter analyzer and an Agilent 81101A pulse generator. We will discuss the switching mechanism of memory device with metal-oxide nano-particles on the graphene mono-layer.

  • PDF

Fabrication of top gate Graphene Transistor with Atomic Layer Deposited $Al_2O_3$

  • Kalode, Pranav;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.212-212
    • /
    • 2013
  • We fabricate and characterize top gate Graphene transistor using aluminum oxide as a gate insulator by atomic layer deposition (ALD). It is found that due to absence of functional group and dangling bonds, ALD of metal oxide is difficult on Graphene. Here we used 4-mercaptopheneol as a functionalization layer on Graphene to facilitate uniform oxide coverage. Contact angle measurement and Atomic force microscopy were used to confirm uniform oxide coverage on Graphene. Raman spectroscopy revealed that functionalization with 4-mercaptopheneol does not induce any defect peak on Graphene. Our device shows mobility values of 4,000 $cm^2/Vs$ at room temperature which also suggest top gate stack does not significantly increase scattering. The noncovalent functionalization method is non-destructive and can be used to grow ultra-thin dielectric for future Graphene applications.

  • PDF

Engineering of Bi-/Mono-layer Graphene Film Using Reactive Ion Etching

  • Irannejad, M.;Alyalak, W.;Burzhuev, S.;Brzezinski, A.;Yavuz, M.;Cui, B.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.4
    • /
    • pp.169-172
    • /
    • 2015
  • Although, there are several research studies on the engineering of the graphene layers using different etching techniques, there is not any comprehensive study on the effects of using different etching masks in the reactive ion etching (RIE) method on the quality and uniformity of the etched graphene films. This study investigated the effects of using polystyrene and conventional photolithography resist as a etching mask on the engineering of the number of graphene layers, using RIE. The effects were studied using Raman spectroscopy. This analysis indicated that the photo-resist mask is better than the polystyrene mask because of its lower post processing effects on the graphene surface during the RIE process. A single layer graphene was achieved from a bi-layer graphene after 3 s of the RIE process using oxygen plasma, and the bi-layer graphene was successfully etched after 6 s of the RIE process. The bilayer etching time was significantly smaller than reported values for graphene flakes in previous research.

Synthesis and Characterization of Layer-Patterned Graphene on Ni/Cu Substrate

  • Jung, Daesung;Song, Wooseok;Lee, Seung Youb;Kim, Yooseok;Cha, Myoung-Jun;Cho, Jumi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.618-618
    • /
    • 2013
  • Graphene is only one atom thick planar sheet of sp2-bonded carbon atoms arranged in a honeycomb crystal lattice, which has flexible and transparent characteristics with extremely high mobility. These noteworthy properties of graphene have given various applicable opportunities as electrode and/or channel for various flexible devices via suitable physical and chemical modifications. In this work, for the development of all-graphene devices, we performed to synthesize alternately patterned structure of mono- and multi-layer graphene by using the patterned Ni film on Cu foil, having much different carbon solid solubilities. Depending on the process temperature, Ni film thickness, introducing occasion of methane and gas ratio of CH4/H2, the thickness and width of the multi-layer graphene were considerably changed, while the formation of monolayer graphene on just Cu foil was not seriously influenced. Based on the alternately patterned structure of mono- and multi-layer graphene as a channel and electrode, respectively, the flexible TFT (thin film transistor) on SiO2/Si substrate was fabricated by simple transfer and O2 plasma etching process, and the I-V characteristics were measured. As comparing the change of resistance for bending radius and the stability for a various number of repeated bending, we could confirm that multi-layer graphene electrode is better than Au/Ti electrode for flexible applications.

  • PDF

Angle-Resolved Photoemission Spectroscopy and Raman Spectroscopy Study on the Quasi-free Standing Epitaxial Graphene on the 4H SiC(0001) surface

  • Yang, Gwang-Eun;Park, Jun;Park, Byeong-Gyu;Kim, Hyeong-Do;Jo, Eun-Jin;Hwang, Chan-Yong;Kim, Won-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.277-277
    • /
    • 2013
  • The epitaxial graphene on the 4H- or 6H-SiC(0001) surface has been intensively studied due to the possibility of wafer-scale growt. However the existence of interface layer (zero layer graphene) and its influence on the upper graphene layer have been considered as one of the main obstarcles for the industrial application. Among various methods tried to overcome the strong interaction with the substrate through the interface layer, it has been proved that the hydrogen intercalation successfully passivate the Si dangling bond of the substrate and can produce the quasi-free standing epitaxial graphene (QFEG) layers on the siC(0001) surface. In this study, we report the results of the angle-resolved photoemission spectroscopy (ARPES) and Raman spectroscopy for the QFEG layers produced by ex-situ and in-situ hydrogen intercalation.From the ARPES measurement, we confirmed that the Dirac points of QFEG layers exactly coincide with the Fermi level. The band structure of QFEG layer are sustainable upon thermal heating up to 1100 K and robust against the deposition of several metals andmolecular deposition. We also investigated the strain of the QFEG layers by using Raman spectroscopy measurement. From the change of the 2D peak position of graphene Raman spectrum, we found out that unlike the strong compressive strain in the normal epitaxial graphene on the SiC(0001) surface, the strain of the QFEG layer are significantly released and almost similar to that of the mechanically exfoliated graphene on the silicon oxide substrate. These results indicated that various ideas proposed for the ideal free-standing graphene can be tested based on the QFEG graphene layers grown on the SiC(0001) surface.

  • PDF

Charge Transfer between Graphene and a Strong Electron Acceptor, Tetrafluorotetracyanoquinodimethane (F4-TCNQ)

  • Lee, Ji-Eun;Kim, Seon-Ho;Gang, Seong-Gyu;Yang, Seong-Ik;Ryu, Sun-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.458-458
    • /
    • 2011
  • Graphene, a single atomic layer of sp2-bonded carbon, shows substantial potential for various applications. Chemical manipulation of its electronic properties will be of great importance. In this study, we have investigated interaction between graphene and organic molecular layer of tetrafluorotetracyanoquinodimethane (F4-TCNQ), a strong electron acceptor. F4-TCNQ films of varying thickness were evaporated onto graphene mechanically exfoliated on SiO2/Si substrates. F4-TCNQ molecules increase the frequencies of Raman G and 2D bands of graphene while decreasing the linewidth of G band and 2D/G intensity ratio, which is consistent with increase of hole density in graphene. These results exemplify the possibility of chemical tuning of electronic properties of graphene.

  • PDF

Transfer-free growth of graphene by Ni-C co-deposition

  • An, Sehoon;Lee, Geun-Hyuk;Song, Inseol;Jang, Seong Woo;Lim, Sang-Ho;Han, Seunghee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.109.2-109.2
    • /
    • 2015
  • Graphene, as a single layer of $sp^2$-bonded carbon atoms packed into a 2D honeycomb crystal lattice, has attracted much attention due to its outstanding properties such as high carrier mobility, chemical stability, and optical transparency. In order to synthesize high quality graphene, transition metals, such as nickel and copper, have been widely employed as catalysts, which need transfer to desired substrates for various applications. However, the transfer steps inevitably induce defects, impurities, wrinkles, and cracks of graphene. Here, we report a facile transfer-free graphene synthesis method through nickel and carbon co-deposited layer, which does not require separately deposited catalytic nickel and carbon source layers. The 100 nm NiC layer was deposited on the top of $SiO_2/Si$ substrates by nickel and carbon co-deposition. When the sample was annealed at $1000^{\circ}C$, the carbon atoms diffused through the NiC layer and deposited on both sides of the layer to form graphene upon cooling. The remained NiC layer was removed by using nickel etchant, and graphene was then directly obtained on $SiO_2/Si$ without any transfer process. Raman spectroscopy was carried out to confirm the quality of resulted graphene layer. Raman spectra revealed that the resulted graphene was at high quality with low degree of $sp^3$-type structural defects. Furthermore, the Raman analysis results also demonstrated that gas flow ratio (Ar : $CH_4$) during the NiC deposition and annealing temperature significantly influence not only the number of graphene layers but also structural defects. This facile non-transfer process would consequently facilitate the future graphene research and industrial applications.

  • PDF

Layer-by-layer assembled graphene oxide films and barrier properties of thermally reduced graphene oxide membranes

  • Kim, Seon-Guk;Park, Ok-Kyung;Lee, Joong Hee;Ku, Bon-Cheol
    • Carbon letters
    • /
    • v.14 no.4
    • /
    • pp.247-250
    • /
    • 2013
  • In this study, we present a facile method of fabricating graphene oxide (GO) films on the surface of polyimide (PI) via layer-by-layer (LBL) assembly of charged GO. The positively charged amino-phenyl functionalized GO (APGO) is alternatively complexed with the negatively charged GO through an electrostatic LBL assembly process. Furthermore, we investigated the water vapor transmission rate and oxygen transmission rate of the prepared (reduced GO $[rGO]/rAPGO)_{10}$ deposited PI film (rGO/rAPGO/PI) and pure PI film. The water vapor transmission rate of the GO and APGO-coated PI composite film was increased due to the intrinsically hydrophilic property of the charged composite films. However, the oxygen transmission rate was decreased from 220 to 78 $cm^3/m^2{\cdot}day{\cdot}atm$, due to the barrier effect of the graphene films on the PI surface. Since the proposed method allows for large-scale production of graphene films, it is considered to have potential for utilization in various applications.