• Title/Summary/Keyword: 4-electrodes

Search Result 1,596, Processing Time 0.032 seconds

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF

Electrochemical properties of $Gd_{0.8}Ca_{0.2}Co_{1-x}Fe_xO_3$ cathodes for medium-temperature SOFC (중간온도형 고체산화물 연료전지의 양극재료로서 $Gd_{0.8}Ca_{0.2}Co_{1-x}Fe_xO_3$의 전기화학특성)

  • Ryu Ji-H.;Jang Jong-H.;Lee Hee-Y.;Oh Seung-M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 1998
  • For the purpose of finding new cathode materials for medium-temperature $(700\~800^{\circ}C)$ solid oxide fuel cells, $Gd_{0.8}Ca_{0.2}Co_{1-x}Fe_xO_3,\;(x=0.0\~0.5)$ are prepared, and their thermal stability and conductivity characteristics are investigated. Also, the cathodic activities are measured after the cathode layer being attached on CGO (cerium-gadolinium oxide) electrolyte disk. The X-ray analyses indicate that the materials prepared by calcining the citrate-gels at $800^{\circ}C$ have the orthorhombic perovskite structure without discernible impurities. The thermal stability of the undoped Co perovskite is so poor that it is decomposed to the individual binary oxide even at $1300^{\circ}C$. But the partially Fe-doped cobaltates exhibit a better thermal stability to retain their structural integrity up to $1400^{\circ}C$. The observation whereby both the undoped and Fe-doped cobaltates melt at ca. $1300^{\circ}C$ leads us to perform the electrode adhesion at <$1300^{\circ}C$. The cathodic activity of $Gd_{0.8}Ca_{0.2}Co_{1-x}Fe_xO_3,\;(x=0.0\~0.5)$, electrodes is superior to $La_{0.9}Sr_{0.1}MnO_3$, among the samples of $x=0.0\~0.5$, the x=0.2 cathode shows the best activity for the oxygen reduction reaction. It is likely that the Fe-doping provides a better thermal stability to the materials but in turn imparts an inferior cathodic activity, such that the optimum trade-off is made at x=0.2 between the two factors. The total electrical conductivity and ion conductivity of $Gd_{0.8}Ca_{0.2}Co_{1-x}Fe_xO_3$, are measured to be 51 S/cm and $6.0\times10^{-4}S/cm\;at\;800^{\circ}C$, respectively. The conductivity values illustrate that the materials are a mixed conductor and the reaction sites can be expanded to the overall electrode surface, thereby providing a better cathodic activity than $La_{0.9}Sr_{0.1}MnO_3$.

Dielectric properties of ${Ta_2}{O_5}$ thin film capacitor with $SnO_2$ thin film underlayer ($SnO_2$ 박막을 이용한 ${Ta_2}{O_5}$박막 커패시터의유전특성)

  • Kim, Jin-Seok;Jeong, Gang-Min;Lee, Mun-Hui
    • Korean Journal of Materials Research
    • /
    • v.4 no.7
    • /
    • pp.759-766
    • /
    • 1994
  • Our investigation aimed to reduce the leakage current of $Ta_2O_5$ thin film capacitor by layering SnOz thin film layer under Ta thin film, thereby supplying extra oxygen ions from the $SnO_{2}$ underlayer to enhance the stoichiometry of $Ta_2O_5$ during the oxidation of Ta thin film. Tantalum was evaporated by e-beam or sputtered on p-Si wafers with various deposition temperatures and was oxidized by dry--oxygen at the temperatures between $500^{\circ}C$ and $900^{\circ}C$. Aluminum top and bottom electrodes were formed to make Al/$Ta_2O_5$/p-Si/Al or $Al/Ta_2O_5/SnO_2$p-Si/AI MIS type capacitors. LCR meter and pico-ammeter were used to measure the dielectric constants and leakage currents of the prepared thm film capacitors. XRD, AES and ESCA were employed to confirm the crystallization of the thin f~lm and the compositions of the films. Dielectric constant of $Ta_2O_5$ thin film capacitor with $SnO_{2}$ underlayer was found to be about 200, which is about 10 times higher than that of $Ta_2O_5$ thin film capacitor without $SnO_{2}$ underlayer. In addition, higher oxidation temperatures increased the dielectric constants and reduced the leakage current. Higher deposition temperature generally gave lower leakage current. $Ta_2O_5/SnO_2$ capacitor deposited at $200^{\circ}C$ and oxidized at $800^{\circ}C$ showed significantly lower leakage current, $10^{-7}A/\textrm{cm}^2$ at $4 \times 10^{5}$V/cm, compared to the one without $SnO_{2}$ underlayer. XRD showed that $Ta_2O_5$ thin film was crystallized above $700^{\circ}C$. AES and ESCA showed that initially the $SnO_{2}$, underlayer supplied oxygen ions to oxidize the Ta layer, however, Sn also diffused into the Ta thin film layer to form a new $Ta_xSn_YO_Z$ , ternary oxide layer after all.

  • PDF

Effect of Terephthalaldehyde to Facilitate Electron Transfer in Heme-mimic Catalyst and Its Use in Membraneless Hydrogen Peroxide Fuel Cell (테레프탈알데하이드의 전자전달 강화효과에 따른 헴 단백질 모방 촉매의 성능 향상 및 이를 이용한 비분리막형 과산화수소 연료전지)

  • Jeon, Sieun;An, Heeyeon;Chung, Yongjin
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.588-593
    • /
    • 2022
  • Terephthalaldehyde (TPA) is introduced as a cross liker to enhance electron transfer of hemin-based cathodic catalyst consisting of polyethyleneimine (PEI), carbon nanotube (CNT) for hydrogen peroxide reduction reaction (HPRR). In the cyclic voltammetry (CV) test with 10 mM H2O2 in phosphate buffer solution (pH 7.4), the current density for HPRR of the suggested catalyst (CNT/PEI/hemin/PEI/TPA) shows 0.2813 mA cm-2 (at 0.2 V vs. Ag/AgCl), which is 2.43 and 1.87 times of non-cross-linked (CNT/PEI/hemin/PEI) and conventional cross liker (glutaraldehyde, GA) used catalyst (CNT/PEI/hemin/PEI/GA), respectively. In the case of onset potential for HPRR, that of CNT/PEI/hemin/PEI/TPA is observed at 0.544 V, while those of CNT/PEI/hemin/PEI and CNT/PEI/hemin/PEI/GA are 0.511 and 0.471 V, respectively. These results indicate that TPA plays a role in facilitating electron transfer between the electrodes and substrates due to the π-conjugated cross-linking bonds, whereas conventional GA cross-linker increases the overpotential by interrupting electron and mass transfer. Electrochemical impedance spectroscopy (EIS) results also display the same tendency. The charge transfer resistance (Rct) of CNT/PEI/hemin/PEI/TPA decreases about 6.2% from that of CNT/PEI/hemin/PEI, while CNT/PEI/hemin/PEI/GA shows the highest Rct. The polarization curve using each catalyst also supports the superiority of TPA cross liker. The maximum power density of CNT/PEI/hemin/PEI/TPA (36.34±1.41 μWcm-2) is significantly higher than those of CNT/PEI/hemin/PEI (27.87±0.95 μWcm-2) and CNT/PEI/hemin/PEI/GA (25.57±1.32 μWcm-2), demonstrating again that the cathode using TPA has the best performance in HPRR.

Electrode Characteristics of K+ Ion-Selective PVC Membrane Electrodes with AC Impedance Spectrum (AC 임피던스 분석법을 이용한 K+ 이온선택성 PVC막 전극 특성)

  • Kim, Yong-Ryul;An, Hyung-Hwan;Kang, An-Soo
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.870-877
    • /
    • 1998
  • With impedance spectrum measurements, impedance was studied in the interface between sample solutions for $K^+-ion$ selective PVC membrane electrode containing neutral carriers [dibenzo-18-crown-6 (D18Cr6) and valinomycine (Val)]. Response characteristics of electrode were examined by measuring AC impedance spectra that were resulted from the chemical structure and the content of carrier, variation of plasticizer, membrane thickness, doping of base electrolytes, and concentration variation of sample solution. Transport characteristics of PVC membrane electrode were also studied. It was found that the equivalent circuit for the membrane in $K^+$ solution could be expressed by a series combination of solution resistance and a parallel circuit consisting of the bulk resistance and geometric capacitance of the membrane system. But the charge transfer resistance and Warburg resistance were overlapped a little in the low concentration and low frequency ranges. The carrier, D18Cr6 was best for electrode and impedance characteristics, and ideal electrode characteristics were appeared especially in case of doping of the base electrolyte[potassium tetraphenylborate(TPB)]. The optimum carrier content was about 3.23 wt% in case of D18Cr6 and Val. DBP was best as a plasticizer. As membrane thickness decreased the impedance characteristics was improved, but electrode characteristics were lowered for membrane thickness below the optimum. In the case of D18Cr6, the selectivity coefficients by the mixed solution method for the $K^+$ ion were the order of $NH_4{^+}>Ca^{2+}>Mg^{2+}>Na^+$.

  • PDF

Study on Plrene Removal Characteristic From An Artificially Contaminated EPA Synthetic Soil Matrix With Varying Heat Treatment Conditions (Pyrene으로 오염된 EPA토양의 열적처리조건에 따른 오염물질 제거 특성 연구)

  • 김영규;양고수
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.2
    • /
    • pp.55-66
    • /
    • 2000
  • A U.S EPA Synthetic soil matrix was used for reference neat soil and pyrene contaminated soil. For the contaminated soil, 4.79 wt.% pyrene was dissolved completely into the djchlorornethane, and the soil was evenly soaked with the pyrene solution. The contaminated soil samples(50$\pm$0.5mg) were heated in a modified electrical screen heater reactor which consisted of a thin stainless foil (3.5cm$\times$13cm$\times$0.00254cm, 302 stainless steel shim), two electrodes, and a 20cm dia. $\times$30cm tall cylindrical Pyrex chamber sealed at both ends by aluminum flanges. The heating rate and time conditions were selected as $455^{\circ}C$ @ $1137^{\circ}C$ /s, $760^{\circ}C$ @ $950^{\circ}C$ /s and $977^{\circ}C$ @ $977^{\circ}C$/s. Tar samples after heating the soils were collected on the aluminum foil funnel and a glass filter paper (25mm dia. filter paper) The tar sample and remnant soil on the reactor were extracted with dichloromethane covering the filters, foils and soil by sonicating each in the waterbath for 10 minutes. The extractions were run on a HPLC. At the low peak temperature(about $455^{\circ}C$ @ $1137^{\circ}C$/s) the color of tar was "white", at the middle peak temperature (about 76$0^{\circ}C$ @ 95$0^{\circ}C$/s) the color of tar was "pink brown", at the high peak temperature (about 977$^{\circ}C$ @ 977$^{\circ}C$/s) the color of tar was "dark brown". Cyclopeta(cd)pyrene (CPEP) , which is an interesting species due to mutagenic effect on human cells, was detected in tar samples only above the middle peak temperature. This species was not detected at the low peak temperature. Six isomers of bipyrene were detected. Phenanthrene(C$_{14}$ $H_{10}$) and cyclopenta(def)phenanthrene(C$_{15}$ $H_{10}$) were also detected, but their content was very small relative to the other listed compounds.to the other listed compounds.

  • PDF

Relation of Ethanol and Calcium to Contractile and Electrical Activity of Cat Stomach (고양이 위(胃)의 수축 및 전기활동에 대한 에탄올과 칼슘의 관계)

  • Kim, Myung-Suk;Sim, Sang-Soo;Yoon, Shin-Hee;Han, Sang-Jun;Kim, Chung-Chin;Choi, Hyun
    • The Korean Journal of Physiology
    • /
    • v.21 no.2
    • /
    • pp.259-272
    • /
    • 1987
  • This was study carried out to investigate the effect of calcium on spontaneous contraction and electrical activity induced by ethanol in gastric smooth muscle. After peeling off the mucous membrane from the isolated whole stomach of 102 cats, two kinds of small muscle preparations $(2.0{\times}0.2\;cm)$, one longitudinal and the other circular, were excised from the fundus, the corpus and the antrum portion of each whole stomach specimen. The isometric contraction of the small muscle preparation was measured in a cylinder-shaped chamber filled with Krebs-Ringer-dextrose solution (pH 7.4, temperature $36{\pm}0.5^{\circ}C$) bubbling with 5% $CO_2$ in $O_2$. A large muscle preparation $(5.0{\times}1.2\;cm)$ was excised from the anterior wall of the corpus-antrum portion of the same specimen in 72 of 102 cats. The gastric electrical activity (slow wave and spike potential) was monopolarly recorded by four capillary electrodes (Ag-AgCl), of which two were placed on the corpus and two on the antrum, in a muscle chamber filled with the same solution as described above. Changes in the amplitude of the contraction, frequency of the gastric slow wave and the production of the spike potential were observed after adding ethanol and/or under the treatments with verapamil, $CaCl_2$ and Ca-free Krebs-Ringer-dextrose solution. The results were as follows: 1) After adding ethanol, the spontaneous phasic contraction of the corpus was reduced dose-dependently (0.125-2.0%), which was totally abolished by higher concentrations (2.0-8.0%) of ethanol. 2) The corporal phasic contraction was also completely abolished by verapamil $(3{\times}10^{-5}\;M)$ or Ca-free Krebs-Ringer-dextrose solution. The contraction was increased by $CaCl_2\;(1.8{\times}10^{-3}\;M)$, but the inhibitory effect of ethanol on the contraction persisted even under the treatment with $CaCl_2$. 3) At higher concentrations, ethanol caused tonic contraction of both preparations from the fundus, the corpus and the antrum in a dose-dependent manner. The tonic contraction of the fundus produced by ethanol was not influenced by $CaCl_2$ or verapamil, whereas the tonic contraction was not produced by ethanol in tile Ca-free solution. 4) Frequency of gastric slow wave was decreased dose-dependently by the addition of ethanol (0.25-1.0%), and tile slow wave was not produced by higher concentration of ethanol (2.0%). 5) The frequency of slow wave was significantly reduced by verapamil only and the inhibitory influence of ethanol on the slow wave frequency was reinforced by verapamil. 6) The treatment of $CaCl_2$ increased significantly the slow wave frequency, and attenuated the inhibitory effect of ethanol on the frequency. It is therefore suggested that ethanol regulates the phasic contraction and the production of slow wave by interfering with the transport of calcium in the stomach muscle of the cat.

  • PDF

Effects of Bombesin on Electrical and Mechanical Activities of Gastric Smooth Muscle Strips of Cats (적출한 고양이 위(胃) 평활근 절편의 전기적 및 기계적 활동에 미치는 Bombesin의 영향과 그 작용기전)

  • Park, Hyoung-Jin;Kwon, Hyeok-Yil;Suh, Sang-Won;Kim, Jeong-Mi;Lee, Tae-Hyung
    • The Korean Journal of Physiology
    • /
    • v.24 no.1
    • /
    • pp.39-49
    • /
    • 1990
  • It has been reported that bombesin induces contraction of the smooth muscle of the gastrointestinal tract. Thus, the present investigation was undertaken to see an influence of bombesin on electrical activity of the gastric smooth muscle, since electrical activity is associated with contractile activity in the smooth muscle of the stomach. Smooth muscle strips $(5\;{\times}\;1.5\;cm)$ that included the corpus and antrum were prepared from the ventral and dorsal portion of the feline stomach along the greater curvature. Circular muscle strips $(1\;{\times}\;0.3\;cm)$ of the corpus were also obtained. Electrical activity of the corpus and antrum of the muscle strip was monophasically recorded by using Ag-AgCl capillary electrodes placed on the circular muscle layer. Contractile activity of the circular muscle strip was also recorded. The recordings were performed in Krebs-Ringer solution that was continuously aerated with $O_{2}$ containing 5% $Co_{2}$, and kept at $36^{\circ}C$. Dose-related responses of electrical activity and contractility to bombesin was studied after frequency of slow waves and contraction of each strip reached to a steady state. An action of $D-leu^{13}-{\psi}\;(CH_{2}NH)-D-leu^{14}-bombesin,\;D-pro^{2}-D-trp^{7,9}-substance\;P$, tetrodotoxin, hexamethonium, atropine, phentolamine or propranolol on the effect of bombesin was also observed. 1) Bombesin increased frequency of slow waves and contractions dose-dependently at concentrations from $10^{-9}\;M\;to\;3\;{\times}\;10^{-8}\;M$. 2) The bombesin analogue at a concentration of $3\;{\times}\;10^{-7}\;M$ antagonized the effect of bombesin on frequency of slow waves. 3) The effect of bombesin on frequency of slow waves was inhibited by tetrodotoxin $(10^{-6}\;M)$ and hexamethonium $(10^{-3}\;M)$ but unaffected by atropine $(10^{-6}\;M)$, phentolamine $(10^{-5}\;M)$ and propranolol $(10^{-5}\;M)$. 4) The effect of bombesin on frequency of slow waves was blocked by the substance P analogue at a concentration of $10^{-5}\;M$. 5) Substance P at a concentration of $10^{-5}\;M$ failed to change frequency of slow waves. It is concluded from the above results that bombesin increases the frequency of slow waves as well as contractions of the smooth muscle strip from the feline stomach, and the effect of bombesin might be mediated by non-cholinergic or non-adrenergic mechanism at neuromuscular junction. However, enteric nerves that have substance P as a neurotransmitter do not appear to participate in the action of bombesin on frequency of slow waves.

  • PDF

Study on the Physical Properties of the Gamma Beam-Irradiated Teflon-FEP and PET Film (Teflon-FEP 와 PET Film 의 감마선 조사에 따른 물리적 특성에 관한 연구)

  • 김성훈;김영진;이명자;전하정;이병용
    • Progress in Medical Physics
    • /
    • v.9 no.1
    • /
    • pp.11-21
    • /
    • 1998
  • Circular metal electrodes were vacuum-deposited with chromium on the both sides of Teflon-FEP and PET film characteristic of electret and the physical properties of the two polymers were observed during an irradiation by gamma-ray from $\^$60/Co. With the onset of irradiation of output 25.0 cGy/min the induced current increased rapidly for 2 sec, reached a maximum, and subsequently decreased. A steady-state induced current was reached about in 60 second. The dielectric constant and conductivity of Teflon-FEP were changed from 2.15 to 18.0 and from l${\times}$l0$\^$-17/ to 1.57${\times}$10$\^$-13/ $\Omega$-$\^$-1/cm$\^$-1/, respectively. For PET the dielectric constant was changed from 3 to 18.3 and the conductivity from 10$\^$-17/ to 1.65${\times}$10$\^$-13/ $\Omega$-$\^$-1/cm$\^$-1/. The increase of the radiation-induced steady state current I$\^$c/, permittivity $\varepsilon$ and conductivity $\sigma$ with output(4.0 cGy/min, 8.5 cGy/min, 15.6 cGy/min, 19.3 cGy/min) was observed. A series of independent measurements were also performed to evaluate reproducibility and revealed less than 1% deviation in a day and 3% deviation in a long term. Charge and current showed the dependence on the interval between measurements, the smaller the interval was, the bigger the difference between initial reading and next reading was. At least in 20 minutes of next reading reached an initial value. It may indicate that the polymers were exhibiting an electret state for a while. These results can be explained by the internal polarization associated with the production of electron-hole pairs by secondary electrons, the change of conductivity and the equilibrium due to recombination etc. Heating to the sample made the reading value increase in a short time, it may be interpreted that the internal polarization was released due to heating and it contributed the number of charge carriers to increase when the samples was again irradiated. The linearity and reproducibility of the samples with the applied voltage and absorbed dose and a large amount of charge measured per unit volume compared with the other chambers give the feasibility of a radiation detector and make it possible to reduce the volume of a detector.

  • PDF

A Study on the Precise End-Point Detection in Titration by Using the Phase Angle Measurements (위상각 측정에 의한 적정의 정확한 종말점 검출법에 관한 연구)

  • Park, Byung-Bin;Shin, Ho-Sang;Lee, Han-Hyoung
    • Analytical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.290-298
    • /
    • 1999
  • A study on the application of impedance phase angle for redox titration, acid-base titration, chelate titration and precipitation titration has been carried out. A constant alternating current was passed between two platinum electrodes. One of them was a polarizable micro-electrode of $0.1cm^2$ or $0.026cm^2$ surface area and the other a non-polarizable large electrode of $1cm^2$ surface area dipped in the solution to be titrated. The impedance and the phase angle of the titration cell were measured with lock-in amplifier to obtain well behaved titration curve respectively. In titration of oxalic acid vs. potassium permanganate, the end-point was obtained successfully from the phase angle titration curve. In this experiment, the concentration of 0.0005 M to 0.05 M, the current of $50{\mu}A$ and the frequency of near 50 Hz were used. In titration of phosphoric acid vs. sodium hydroxide, the first end-point was obtained successfully on the optimum experimental condition of 0.001 M concentration, $50{\mu}A$ current and 25~97 Hz frequency. However, the end-point in titration of cupric sulfate vs. disodium-EDTA couldn't be obtained clearly. The end-point was obtained with the out-of-phase impedance curve on the experimental condition of 0.01 M concentration, $100{\mu}A$ current, 5~35 Hz frequency range. In titration of sodium chloride vs. silver nitrate, the end-point was obtained successfully on the experimental condition of 0.1 M concentration, $100{\mu}A$ current and 5~47 Hz frequency range. This study showed that the impedance phase angle was applicable for the detection of the end-points in redox titration curve, acid-base titration curve, chelate titration curve and precipitation titration curve.

  • PDF