• Title/Summary/Keyword: 4 element

Search Result 8,789, Processing Time 0.035 seconds

Formulation Method of a Solid-To-Beam Transitional Finite Element (연속체-보 천이 유한요소의 구성)

  • Park, Woo-Jin;Lim, Jang-Keun
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.351-356
    • /
    • 2000
  • Various transition elements are generally used for the effective analysis of a complicated mechanical structure. In this paper, a solid-to-beam transition finite element which connects a continuum element and a $c^1-continuity$ beam element each other is proposed. The shape functions of the transition finite elements, which a 8-noded hexahedral solid element fur 3D analysis and a 4-noded quadrilateral plane element fur 2D analysis are connected to a Euler's beam element, are explicitely formulated. In order to show the effectiveness and convergence characteristics of the proposed transition elements. numerical tests are performed for various examples and their results are compared with those obtained by other methods. As the result of this study. following conclusions are obtained: (1)The proposed transition finite elements show the monotonic convergence characteristics because of having used the compatible displacement folds. (2)As being used the transition element in the finite element analysis, the finite element modelings are more convenient and the analysis results are more accurate because of the formulation characteristies of the Euler's beam element.

  • PDF

Development of New Stacked Element Piezoelectric Polyvinylidene Fluoride Pressure Sensor for Simultaneous Heartbeat and Respiration Measurements (PVDF 압전소자를 이용한 심장박동 및 호흡수 동시측정센서개발)

  • Park, Chang-Yong;Kweon, Hyun-Kyu;Lee, So-Jin;Manh, Long-Nguyen
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.100-108
    • /
    • 2019
  • In this paper, a new stacked element pressure sensor has proposed for heartbeat and respiration measurement. This device can be directly attached to an individual's chest; heartbeat and respiration are detected by the pulsatile vibration and deformation of the chest. A key feature of the device is the simultaneous measurement of heart rate and respiration. The structure of the sensor consists of two stacked elements, in which one element includes one polyvinylidene fluoride (PVDF) thin film bonded on polydimethylsiloxane (PDMS) substrate. In addition, for the measurement and signal processing, the electric circuit and the filter are simply constructed with an OP-amp, resistance, and a capacitor. One element (element1, PDMS) maximizes the respiration signal; the other (element2, PVDF) is used to measure heartbeat. Element1 and element2 had sensitivity of 0.163V/N and 0.209V/N, respectively, and element2 showed improved characteristics compared with element1 in response to force. Thus, element1 and element2 were optimized for measuring respiration heart rate, respectively. Through mechanical and vivo human tests, this sensor shows the great potential to optimize the signals of heartbeat and respiration compared with commercial devices. Moreover, the proposed sensor is flexible, light weight, and low cost. All of these characteristics illustrate an effective piezoelectric pressure sensor for heartbeat and respiration measurements.

Nonlinear finite element analysis of fibre reinforced concrete deep beams

  • Swaddiwudhipong, S.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.4
    • /
    • pp.437-450
    • /
    • 1996
  • A study on the behaviour of fibre reinforced concrete deep beams with and without web openings is carried out using nonlinear finite element analysis. Eight node isoparametric plane stress elements are employed to model the fibre reinforced concrete materials. Steel bars are treated using a compatible three node truss elements. The constitutive equations for fibre reinforced concrete materials take into account the softening effect of co-existing shear strains. Element stiffness at each step is formulated based on the tangent modulus at the current level of principal strains. Transformation between principal directions and global coordinate system is imposed. Comparison of analytical results with experimental values indicates reasonably good agreement. The proposed numerical model can be used to study the behaviour of this composite structures of practically any geometries.

Vibration Analysis of Tapered Thick Plate Subjected to Static In-plane Stress on Pasternak Foundation (Pasternak지반 위에 놓인 면내력을 받는 변단면 후판의 진동해석)

  • Cheong, Jin-Taek;Lee, Yong-Soo;Oh, Soog-Kyoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.4 s.97
    • /
    • pp.388-394
    • /
    • 2005
  • This paper has the object of investigating natural frequencies of tapered thick plate on Pasternak foundation by means of finite element method and providing kinetic design data for mat of building structures. Vibration analysis for tapered thick plate subjected to in-plane stress is presented in this paper. Finite element analysis of rectangular plate is done by use of rectangular finite element with 8-nodes. Analysis conditions of tapered thick plate are as follows each. The ratio of in-plane stress to critical load is varied with $0.2\sigma_{cr}$, $0.4\sigma_{cr}$, $0.6\sigma_{cr}$. The Winkler parameter is 0, 10, 100, 1000, the shear foundation parameter is 0, 10 and the taper ratio is 0.0, 0.2, 0.4, 0.6, 0.8.

Development of Finite Element Model for impact Human Brain Injury (인간 뇌의 충격 부상에 대한 유한요소모델 개발에 관한 연구)

  • 김영은;남대훈;왕규창
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.97-106
    • /
    • 1996
  • The impact response of the human brain has been determined by three-dimensional finite element modeling. The model includes a layered shell closely representing the cranial bones with the interior contents occupied by an incompressible contimuum to simulate the brain. Flax and tentorium modeled with 4 node membrane element were also incorporated. The computed pressure-time histories at 4 locations within the brain element compared quite favorably with previously published experimental data from cadaver experiments. A parametric study was subsequently conducted to identify the model response when the impact were varied.

  • PDF

Features of Spiral Thickenings in Korean Dicotyledonous Woods (국산(國産) 활엽수재(闊葉樹材) 나선비후(螺旋肥厚)의 분포특성(分布特性))

  • Kim, Jae-Woo;Kim, Yu-Jung;Park, Sang-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.39-44
    • /
    • 1994
  • This study was carried out to investigate features pertaining to spiral thickenings, which was considered one of the most important diagnostic values, for wood identification. Species, kind of cells with spiral thickening, and ridge numbers of spiral thickening per axial mm were recorded in 71 families, 144 genera, 316 species of Korean hardwoods. Spiral thickening was observed in 128 of 316 species, about 40.5 % of all the investigated, and classified into 6 types on the basis of distributional patterns and morphological features as follows: 1. Type 1, present throughout all vessel element, which was found in 14 families, 19 genera, 43 species. 2. Type 2, present only in small vessel element, which was found in 18 families, 29 genera, 41 species. 3. Type 3, present both in small vessel element and wood fibers, which was found in 8 families, 17 genera, 29 species. 4. Type 4, present in wood fibers, which was found in 1 family, 1 genus, 1 species. 5. Type 5, present only in tail of vessel element, which was found in 4 families, 5 genera, 9 species. 6. Type 6, being present in vessel element faintly or partially, which was found in 2 families, 3 genera, 5 species.

  • PDF

An efficient six-node plate bending hybrid/mixed element based on mindlin/reissner plate theory

  • Mei, Duan;Miyamoto, Yutaka;Iwasaki, Shoji;Deto, Hideaki;Zhou, Benkuan
    • Structural Engineering and Mechanics
    • /
    • v.5 no.1
    • /
    • pp.69-83
    • /
    • 1997
  • A new efficient hybrid/mixed thin~moderately thick plate bending element with 6-node (HM6-14) is formulated based on the Reissner-Mindlin plate bending theory. The convergence of this element is proved by error estimate theories and verified by patch test respectively. Numerical studies on such an element as HM6-14 demonstrate that it has remarkable convergence, invariability to geometric distorted mesh situations, to axial rotations, and to node positions, and no "locking" phenomenon in thin plate limit. The present element is suitable to many kinds of shape and thin~moderately thick plate bending problems. Further, in comparison with original hybrid/mixed plate bending element HP4, the present element yields an improvement of solutions. Therefore, it is an efficient element and suitable for the development of adaptive multi-field finite element method (FEM).

Evaluation of Strength and Residual Stress in $Si_3N_4/SUS304$ Joint ($Si_3N_4/SUS304$ 접합재의 잔류응력 및 강도평가)

  • 박영철;오세욱;조용배
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.101-112
    • /
    • 1994
  • The measurement of residual stress distribution of $Si_3N_4/SUS304$ joint was performed on 23 specimens with the same joint condition using PSPC type X-ray stress measurement system and the two-dimensional elastoplastic analysis using finite element method was also attempted. As results, residual stress distribution near the interface on the ceramic side of the joint was revealed quantitatively. Residual stress on the ceramic side of the joint was turned out to be tensional near the interface, maximum along the edge, varying in accordance with the condition of the joint and variance to be most conspicuous for the residual stress normal to the interface characterized by the stress singularities. In the vicinity of the interface, the high stress concentration occurs and residual stress distributes three-dimensionally. Therefore, the measured stress distribution differed remarkably from the result of the two-dimensional finite-element analysis. Especially at the center of the specimen near the interface, the residual stress, $\sigma_{x}$ obtained from the finite element analysis was compressive, whereas measurement using X-ray yielded tensile $\sigma_{x}$. Here we discuss two dimensional superposition model the discrepancy between the results from the two dimensional finite element analysis and X-ray measurement.

The Evaluation on the Type of Support Element by Field Test Data in 4-lane Wide Road Tunnel (4차로 광폭터널의 계측결과를 이용한 암반등급에 따른 지보수준 평가)

  • Do, Jongnam;Kim, Yeonjoong;Lee, Chanbok;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.1
    • /
    • pp.15-20
    • /
    • 2012
  • Field measurement is a very essential factor for economic aspect and estimation of stability of tunnels. In this paper, various types of support element based on field test data in 4-lane wide road tunnel were evaluated. And stability and economical efficiency were also estimated. The estimated value were compared with design value and the type of support element which is applicable to site condition was evaluated. The results show that most of support elements were modified under the standard value(30mm) and type of support element which is already constructed was overestimated. So, appropriate level of support element have to be presented to save the time and cost during construction.

Analysis of Anisotropic Folded Structures using Triangular and Quadrilateral Elements (3절점 및 4절점 요소를 이용한 비등방성 절판 구조물의 해석)

  • Yoo, Yong-Min;Yhim, Sung-Soon;Chang, Suk-Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.1
    • /
    • pp.29-37
    • /
    • 2007
  • This study deals with displacement analysis of anisotropic folded structures with triangular elements and quadrilateral elements. When folded plates are analyzed, triangular elements as well as quadrilateral elements are needed for conveniences of modelling. However, using triangular elements is not a simple problem. A simple formulation is presented which allows a quadrilateral element to degenerate into a triangular element. Therefore it can easily be used for computational simplicity and avoided complexities on mixed use of triangular element and quadrilateral element. In this paper, a high-order shear deformation theory using only Lagrangian interpolation functions and drilling degrees of freedom for folded plates are utilized for more accurate analysis. Especially, various results of anisotropic laminated and folded composite structures with triangular element and quadrilateral element show the structural behavior characteristics of them.