References
- 유용민, 임성순, 장석윤(2003) 임의의 골절각도를 갖는 비등방성 절판의 변위형상 비교, 대한토목학회, 23 (6-A), pp.1311-1319
- 유용민, 임성순, 장석윤(2006) 곡절 길이비에 따른 복합적층 절판 구조물의 거동, 한국전산구조공학회 논문집, 19(3), pp.223-231
- 이병채, 이용주, 김동석, 구본용(1992) 삼각형 판 요소의 변위 거동에 대한 비교 연구, 한국전산구조공학회 논문집, 5(2), pp.105-118
- 이상열, 유용민, 장석윤(2004) 고차전단변형 판이론을 이용한 채널단면을 갖는 복합적층 절판 구조물의 유한요소 진동해석, 한국전산구조공학회 논문집, 17(1), pp.21-30
- Allmen , D. J(1984) A compatible triangular element including vertex rotations for plane elasticity analysis. Computers & Structures. 19(1-2). pp.1-8 https://doi.org/10.1016/0045-7949(84)90197-4
- Dhainaut, Marc(1997) A comparison between serendipity and lagrange plate elements in the finite element method. Communications in numerical methods in engineering, 13(5). pp.343-353 https://doi.org/10.1002/(SICI)1099-0887(199705)13:5<343::AID-CNM60>3.0.CO;2-2
- Eratli, Nihal, Akoz, A. Yalcin(2002) Mixed finite element formulation for folded plates, Structural Engineering and Mechanics, 13(2). pp.155-170 https://doi.org/10.12989/sem.2002.13.2.155
- Goldberg, J. E., Leve, H. L.(1957) Theory of prismatic folded plate structures, Int. Association for Bridge and Structural Engineering J., 17
- Ibrahimbegovic, A., Wilson, E. L.(1991) A united formulation for triangular and quadrilateral flat shell elements with six nodal degree of freedom, Communication in Applied Numerical Methods, 7. pp.1-9 https://doi.org/10.1002/cnm.1630070102
- Lo, K. H., Christensen, R. M., Wu, E. M.(1977) A higher-order theory of plate deformation. Part 1 : homogeneous plates. Journal of Applied Mechanics, 44. pp.663-668 https://doi.org/10.1115/1.3424154
- Lo, K H., Christensen, R. M., Wu, E. M.(1977) A higher-order theory of plate deformation. Part 2:laminated plates. Journal of Applied Mechanics. 44. pp.669-676 https://doi.org/10.1115/1.3424155
- Niyogi, A Guha, Laha, M. K., Sinha, P. K.(1999) Finite element vibration analysis of laminated composite folded plate structures. Shock and Vibration, 6(5/6). pp.273-284 https://doi.org/10.1155/1999/354234
- Reddy, J. N. (1984) A simple higher-order theory for laminated composite plates. Journal of Applied Mechanics. 51, pp.745-752 https://doi.org/10.1115/1.3167719
- Putcha, N. S., Reddy, J. N.(1986) A refined mixed shear flexible finite element for the nonlinear analysis of laminated plates. Computers & Structures. 22(4). pp.529-538 https://doi.org/10.1016/0045-7949(86)90002-7
- Sadek, Edward A.(1998) Some serendipity finite elements for the analysis of laminated plates. Computers & Structures, 69(1). pp.37-51 https://doi.org/10.1016/S0045-7949(98)00077-7
- Turne, M. J., Clough, R. W., Martin, H. C., Topp, L. J.(1956) Stiffness and deflection analysis of complex structures. Journal of Aero/Space Science. 23. pp.805-823
- Bathe, Klaus-Jurgen(1996) Finite element procedures. Prentice Hall
- Zienkiewicz, O. C., Taylor, R. C.(1991) The finite element method. 2. 4th edition. McGraw-Hill