• 제목/요약/키워드: 4 Wheel Steering

검색결과 125건 처리시간 0.027초

핸들조향속도를 고려한 4WS 제어방법에 관한 연구 (A Study on the 4WS Control Method with the Effect of Steering Wheel Angular Velocity)

  • 이영화;김석일;김대영;김동룡
    • 한국자동차공학회논문집
    • /
    • 제4권3호
    • /
    • pp.168-175
    • /
    • 1996
  • Except the collision avoidance performance related to the rapid lane change, the 4WS vehicle has better dynamic stability and handling performance than the conventional 2WS vehicle which has close relation with the driver's safety, a 4WS conrol method with the effect of steering wheel angular velocity is proposed based on the fact that the driver steers abruptly the steering wheel to avoid the collision. And the effects of the proposed 4WS control method are investigated on the dynamic stability and handling performance by using the ISO lane change test code.

  • PDF

후륜 조향 동력학 모델 및 제어 로직 개발 (Development of the Dynamic Model and Control Logic for the Rear Wheel Steering in 4WS Vehicle)

  • 장진희;김상현;한창수
    • 한국자동차공학회논문집
    • /
    • 제4권6호
    • /
    • pp.39-51
    • /
    • 1996
  • In the turning maneuver of the vehicle, its motion is mainly dependent on the genuine steering characteristics in view of the directional stability for stable turning ability. The under steer vehicle has an ability to maintain its own directonal performance for unknown external disturbances to some extent. From a few years ago, in order to acquire the more enhanced handling performance, some types of four wheel steering vehicle were considered and constructed. And, various rear wheel control logics for external disturbances has not been suggested. For this reason, in this posed rear wheel control logic is based on the yaw rate feed back type and is slightly modified by an yaw rate tuning factor for more stable turning performance. And an external disturbance is defined as a motivation of the additional yaw rate in the center of gravity by an uncertain input. In this study, an external disturbance is applied to the vehicle as a form of the additional yawing moment. Finally, the proposed rear wheel control logic is tested on the multi-body analysis software(ADAMS). J-turn and double lane change test are performed for the validation of the control logic.

  • PDF

가상 운전 시뮬레이터를 이용한 족동 조향 시스템의 운전 성능 평가 (Driving Performance Evaluation Using Foot Operated Steering System in the Virtual Driving Simulator)

  • 송정헌;김용철
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권4호
    • /
    • pp.197-204
    • /
    • 2017
  • The aim of this study was to evaluate driving performance of normal subjects for controlling the steering wheel by using foot operated steering devices in the driving simulator. Many people with complete bilateral loss or loss of use of upper limbs but with normal lower limbs are frequently left without use and/ or control of their hands, arms, or the upper extremities of their bodies. As a result, persons disabled in this manner have problems in operation an automobile because they cannot grasp and manipulate a conventional steering wheel. Therefore, if foot operated steering devices are used for controlling the vehicle on in people with disabilities, the disabled people could improve their community mobility by driving a car safely. Ten normal subjects were involved in this research to evaluate steering performance by using three types of steering devices(conventional steering wheel, pedal type foot steering, circular type foot steering) in driving simulator. STISim Drive 3 program was used for testing the driving performance in two road scenarios: straight road and curved road at low and high speed of vehicle (40 km/h and 80 km/h). This study used two-way ANOVA to compare the influences of two factors(type of foot steering device and road scenario) in the three dependent variables of steering performance(standard deviation of lateral position, the lateral position of vehicle and the number of line crossing). The average values of the three dependent variables(standard deviation of lateral position, lateral position and the number of line crossing) of driving performance were significantly smaller for conventional steering wheel or pedal type foot steering than circular type foot steering.

휠 슬립에 강건한 확장칼만필터 기반 차량 상태 추정 (Vehicle State Estimation Robust to Wheel Slip Using Extended Kalman Filter)

  • 전명근;조아라;이경수
    • 자동차안전학회지
    • /
    • 제14권4호
    • /
    • pp.16-20
    • /
    • 2022
  • Accurate state estimation is important for autonomous driving. However, the estimation error increases in situations that a lot of longitudinal slip occurs. Therefore, this paper presents a vehicle state estimation method using an Extended Kalman Filter. The filter estimates the states of the host vehicle robust to wheel slip. It utilizes the measurements of the four-wheel rotational speeds, longitudinal acceleration, yaw-rate, and steering wheel angle. Nonlinear measurement model is represented by Ackermann Model. The main advantage of this approach is the accurate estimation of yaw rate due to the measurement of the steering wheel angle. The proposed algorithm is verified in scenarios of autonomous emergency braking (AEB), lane change (LC), lane keeping (LK) using an automated vehicle. The results show that the proposed algorithm guarantees accurate estimation in such scenarios.

D$^*$Model Matching Control System for Four Wheel Steering

  • Asara, Naoki;Osa, Yasuhiro;Uchikado, Shigeru;Kanai, Kimio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.670-674
    • /
    • 2005
  • $D^*$ criterion is defined as a reference of the handling quality and ride comfortableness for lateral-directional automobile motion. However it is generally difficult to obtain the satisfied handling quality and ride comfortableness based on $D^*$ criterion by conventional two wheel steering system. In this study, a design method of model matching control system is proposed to obtain the satisfied $D^*$ response of 4 Wheel Steering.

  • PDF

조향 휠 수직 진동의 체감량 평가에 관한 연구 (A Study on the Evaluation of Sensation Magnitude of Vertical Vibration of a Steering Wheel)

  • 장한기;홍석인
    • 한국자동차공학회논문집
    • /
    • 제15권6호
    • /
    • pp.108-113
    • /
    • 2007
  • This study aims to find equivalent comfort contours, reciprocal of frequency weighting curves, for vertical steering wheel vibration. Psychophysical responses were measured from twelve male subjects by using magnitude estimation of relative discomfort due to vertical steering wheel vibrations of magnitude of 0.1 to 1.58 $m/s^2$ in the frequency range of 4 to 250 Hz. Relative discomfort were estimated with a reference vibration of 0.4 $m/s^2$ at 31.5 Hz. Equivalent comfort contours were produced from the median of sensation magnitudes judged by twelve subjects, which showed variation in the shapes with increase of vibration magnitude. A shape of the contour came close to the perception threshold curve with decrease of vibration magnitude. When the vibration magnitude increases, the shape changed close to those in the references of Hong and et al (2003). It is also recommended frequency weighting curves for vertical steering wheel vibration must be expressed as a function of vibration magnitude as well as frequency.

다양한 인체치수에 따른 산업차량의 핸들과 폐달 위치에 관한 연구 (A Study about Steering Wheel and Pedal Position of Industrial Vehicle by the Various Body Dimensions)

  • 최진봉;구락조;정명철;박범
    • 산업경영시스템학회지
    • /
    • 제29권4호
    • /
    • pp.1-7
    • /
    • 2006
  • This study determined the optimal positions of the movable steering wheel and pedal systems of industrial vehicle by various body dimensions. The position of objects and starting driving posture were measured by Martin-type anthropometer and goniometer. The X, Y and Z axis of movable steering wheel and pedal systems were measured horizon distance from right side to left side, horizon distance from front side to rear side and vertical distance from floor to ceiling. During the experiment in order to exclude learning effectiveness with forklift driving, 27 subjects who had male not experiences in driving a forklift used in the experiment. The relationship between the position of steering wheel and driver's posture with body dimensions was analyzed by using correlation relation and paired comparison t-test based on the measured data. The pedal location in X and Z axises was not related with various body dimensions. Also, the steering wheel was different among the angles of the right elbow and shoulder depending on the various body dimensions.

4륜 조향시스템이 차량의 주행역학적 특성에 미치는 영향 (Effect of four-wheel steering system on vehicle handling characterisitcs)

  • 심정수;허승진;유영면
    • 오토저널
    • /
    • 제12권3호
    • /
    • pp.21-29
    • /
    • 1990
  • Equipments of passenger cars with modern technologies are gaining their importance. Related with such developments, the four-wheel steering system (4WS) was introduced recently to a few passenger cars in the market. The most important research goal on this new steering system is improvement of active safety, in other words, improvement of handling characteristics of vehicle stability and maneuverability. This paper presents a computer-based study about the effects of 4WS system on the vehicle handling characteristics. A simple bicycle model of 2 d.o.f. is used for the development of four wheel control algorithms of 4WS system, and the rear wheel control strategies are applied to a complex vehicle model of 16 d.o.f. for simulation of selected ISO-driving tests. The 4WS systems, which reduce the sideslip angle at the mass center of vehicle to almost zero, show much improved handling characteristics compared to that of the conventional 2WS system. These 4WS systems, however, result in vehicles with eigen-steer characteristics of extreme understeer behaviour.

  • PDF

토크맵을 이용한 칼럼형 전기식 동력조향 시스템의 제어로직 (Control Logic Using Torque Map for a Column-Type Electric Power Steering System)

  • 김지훈;송재복
    • 한국자동차공학회논문집
    • /
    • 제8권4호
    • /
    • pp.186-193
    • /
    • 2000
  • EPS(Electric Power Steering) systems have many advantages over traditional hydraulic power steering systems in space efficiency engine efficiency and environmental compatibility. In this paper an EPS system control logic using a torque map is proposed. The main function of the EPS system is to reduce the steering torque exerted by a driver by assist of an electric motor. Vehcile speed steering torque and steering wheel angle are measured and fed back to the EPS control system where appropriate assist torque is generated to assist the operator's steering effort. Another capability of the EPS system for easy adaptation to different steering feels via simple tuning is demonstrated by the experiments. It will be also verified that the EPS system can also improve damping and return performance of the steering wheel by control of the assist motor.

  • PDF

차량의 선회시 주행 안정성 강화를 위한 ESP 시스템 개발 및 성능 평가 (II) (Development and Evaluation of ESP Systems for Enhancement of Vehicle Stability during Cornering (II))

  • 송정훈
    • 대한기계학회논문집A
    • /
    • 제30권12호
    • /
    • pp.1551-1556
    • /
    • 2006
  • Two yaw motion control systems that improve a vehicle lateral stability are proposed in this study: a rear wheel steering yaw motion controller (SESP) and an enhanced rear wheel steering yaw motion controller (ESESP). A SESP controls the rear wheels, while an ESESP steers the rear wheels and front outer wheel to allow the yaw rate to track the reference yaw rate. A 15 degree-of-freedom vehicle model, simplified steering system model, and driver model are used to evaluate the proposed SESP and ESESP. A robust anti-lock braking system (ABS) controller is also designed and developed. The performance of the SESP and ESESP are evaluated under various road conditions and driving inputs. They reduce the slip angle when braking and steering inputs are applied simultaneously, thereby increasing the controllability and stability of the vehicle on slippery roads.